@article{AIHPA_1997__66_4_373_0, author = {Vakulenko, S. A.}, title = {Reaction-diffusion systems with prescribed large time behaviour}, journal = {Annales de l'I.H.P. Physique th\'eorique}, pages = {373--410}, publisher = {Gauthier-Villars}, volume = {66}, number = {4}, year = {1997}, mrnumber = {1459513}, zbl = {0894.35048}, language = {en}, url = {http://archive.numdam.org/item/AIHPA_1997__66_4_373_0/} }
TY - JOUR AU - Vakulenko, S. A. TI - Reaction-diffusion systems with prescribed large time behaviour JO - Annales de l'I.H.P. Physique théorique PY - 1997 SP - 373 EP - 410 VL - 66 IS - 4 PB - Gauthier-Villars UR - http://archive.numdam.org/item/AIHPA_1997__66_4_373_0/ LA - en ID - AIHPA_1997__66_4_373_0 ER -
Vakulenko, S. A. Reaction-diffusion systems with prescribed large time behaviour. Annales de l'I.H.P. Physique théorique, Tome 66 (1997) no. 4, pp. 373-410. http://archive.numdam.org/item/AIHPA_1997__66_4_373_0/
[1] Self-Organization in Nonequilibrium Systems (Wiley, New York, 1977). | MR | Zbl
and ,[2] Synergetics. An Introduction (Springer, Heidelberg, New York, 1977). | MR | Zbl
,[3] Sur le comportement global des solutions nonstationaire des équations de Navier-Stokes en dimensional 2, Rend. Semin. Math. Univ. di Padova, Vol. 39, 1967, pp. 1-34. | Numdam | MR | Zbl
and ,[4] Regular attractors of semigroups and evolution equations, J. Math. Pures Appl., Vol. 62, 1983, pp. 441-491. | MR | Zbl
, ,[5] Finding minimal global attractors for Navier-Stokes equations and other partial differential equations, Uspechi Mat. Nauk, Vol. 42, 1987, pp. 25-60. | MR | Zbl
,[6] Weakly contracting systems and attractors of Galerkin approximation for Navier-Stokes equation on two-dimensional torus, Uspechi Mechanics, Vol. 1, 1982, pp. 31-63. | Zbl
,[7] Asymptotic behavior of dissipative systems (Providence: American Mathematical Society). | MR | Zbl
, 1988,[8] Global attractors in nonlinear problems, Uspechi Mat. Nauk, Vol. 48, 1993, pp. 135-162. | MR | Zbl
,[9] Integrable manifolds and inertial manifolds for dissipative differential equations, 1989. | Zbl
, , and ,[10] Reduction of semilinear parabolic equations to finite dimensional C1-flow, Geometry and Topology, Lecture Notes in Mathematics No. 597, Springer-Verlag, New York, 1977, pp. 361-378. | MR | Zbl
,[11] Inertial manifolds for reaction-diffusion equations in higher space dimensions, J. Amer. Math. Soc., Vol. 1, 1988, pp. 805-866. | MR | Zbl
and ,[12] Infinite dimensional dynamical systems in mechanics and physics, New York etc., (Springer, 1988). | MR | Zbl
,[13] Stability and convergence in strongly monotone dynamical systems, J. Reine Angew Math., Vol. 383, 1988, pp. 1-58. | MR | Zbl
,[14] Convergence for strongly order preserving semiflows SIAM, J. Math. Anal.., Vol. 22, 1991, pp. 1081-1101. | MR | Zbl
and ,[15] Convergence to cycles as a typical asyptotic behavior in smooth discrete-time strongly monotone dynamical systems, Arch. Rat. Mech. Anal., Vol. 116, 1991, pp. 339-360. | MR | Zbl
and ,[16] Exponential separation and invariant bundles for maps in ordered Banach spaces with applications to parabolic equations, J. Dynamics Diff. Equations, Vol. 5, 1993, pp. 279-303. | MR | Zbl
and ,[17] A Poincare-Bendixson theorem for scalar reaction-diffusion equations, Arch. Rat. Mech. and Anal., Vol. 107, 1989, pp. 325-345. | MR | Zbl
and ,[18] Stabilization of solution of boundary nonlinear problems for a second order parabolic equations with one space variable. Diff. Eq., Vol. 4, 1968, pp. 17-22. | Zbl
,[19] Realization of any finite jet in a scalar semilinear parabolic equation on the ball in R2, Annali Scuola Norm Pisa, Vol. 17, 1991, pp. 83-102. | Numdam | MR | Zbl
,[20] Complicated dynamics in Scalar Semilinear Parabolic Equations, In Higher Space Dimensions, J. of Diff. Eq., Vol. 89, 1991, pp. 244-271. | MR | Zbl
,[21] Invariant asymptotically stable tori for perturbed KdV, Uspechi Mat. Nauk, Vol. 35, 1980, pp. 121-181. | MR | Zbl
,[22] Complicated dynamics of scalar reaction-diffusion equations with a nonlocal term, Proc. Roy. Soc., Edinburgh, Vol. 434A, 1990, pp. 167-192. | MR | Zbl
and ,[23] The oscillating wave fronts, Nonlinear Analysis TMA, Vol. 19, 1992, pp. 1033-1046. | MR | Zbl
,[24] Existence of Ruelle-Takens transition to for some evolution equations, C.R.A.S. Paris, Vol. 316, serie I, 1993, pp. 1015-1018. | MR | Zbl
,[25] The existence of chemical waves with complex front movement, Zh. Vychisl. Mov. i Mat. Fiz., Vol. 31, 1991, pp. 735-744. | MR
,[26] Geometric methods in Theory of Ordinary Differential Equations, 2nd ed. (New York: Springer 1988). | MR
,[27] Dynamics retrospective: great problems, attempts that failed, Physica D, Vol. 51, 1991, pp. 267-273. | MR | Zbl
,[28] Mathematics of Time (Springer, N. Y. 1980). | MR
,[29] Dynamical systems with hyperbolic behaviour Itogi Nauki i techniki Sovr. Prob. Mat. VINITI, Vol. 66, 1991. | MR
, et al.,[30] On the nature of turbulence, Comm. Math. Phys., Vol. 20, 1971, pp.167-192. | MR | Zbl
and ,[31] Occurence of strange axiom A attractors from quasi periodic flows, Comm. Math. Phys., Vol. 64, 1978, pp. 35-40. | MR | Zbl
, and ,[32] Elements of differentiable dynamics and bifurcation theory (Acad. Press, Boston etc., 1989). | MR | Zbl
,[33] Differentiable Dynamics (M.I.T. Press, Cambridge, etc., 1971). | MR
,[34] Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics 840 (Berlin: Springer 1981). | MR | Zbl
,[35] Kolmogorov's hydrodynamic attractors, Proc. Roy. Soc. London, Ser. A, Vol. 434, 1991, pp. 19-22. | MR | Zbl
,[36] The study of the stability of a stationary solution of the systems of equations of the plane motion of the imcompressible vicsous fluid., Appl. Math. Mech., Vol. 6, 1961, pp. 1140-1143. | Zbl
and ,[37] Mathematical methods in Classical Mechanics (Moscow 1974). | Zbl
,[38] Chemical oscillations, waves and turbulence (Springer, Berlin, etc., 1984). | MR | Zbl
,