Minimizing Oseen-Frank energy for nematic liquid crystals : algorithms and numerical results
Annales de l'I.H.P. Physique théorique, Tome 66 (1997) no. 4, pp. 411-447.
@article{AIHPA_1997__66_4_411_0,
     author = {Alouges, F. and Ghidaglia, J. M.},
     title = {Minimizing {Oseen-Frank} energy for nematic liquid crystals : algorithms and numerical results},
     journal = {Annales de l'I.H.P. Physique th\'eorique},
     pages = {411--447},
     publisher = {Gauthier-Villars},
     volume = {66},
     number = {4},
     year = {1997},
     mrnumber = {1459514},
     zbl = {0911.35007},
     language = {en},
     url = {http://archive.numdam.org/item/AIHPA_1997__66_4_411_0/}
}
TY  - JOUR
AU  - Alouges, F.
AU  - Ghidaglia, J. M.
TI  - Minimizing Oseen-Frank energy for nematic liquid crystals : algorithms and numerical results
JO  - Annales de l'I.H.P. Physique théorique
PY  - 1997
SP  - 411
EP  - 447
VL  - 66
IS  - 4
PB  - Gauthier-Villars
UR  - http://archive.numdam.org/item/AIHPA_1997__66_4_411_0/
LA  - en
ID  - AIHPA_1997__66_4_411_0
ER  - 
%0 Journal Article
%A Alouges, F.
%A Ghidaglia, J. M.
%T Minimizing Oseen-Frank energy for nematic liquid crystals : algorithms and numerical results
%J Annales de l'I.H.P. Physique théorique
%D 1997
%P 411-447
%V 66
%N 4
%I Gauthier-Villars
%U http://archive.numdam.org/item/AIHPA_1997__66_4_411_0/
%G en
%F AIHPA_1997__66_4_411_0
Alouges, F.; Ghidaglia, J. M. Minimizing Oseen-Frank energy for nematic liquid crystals : algorithms and numerical results. Annales de l'I.H.P. Physique théorique, Tome 66 (1997) no. 4, pp. 411-447. http://archive.numdam.org/item/AIHPA_1997__66_4_411_0/

[1] F. Alduges,, Un algorithme qui décroît sûrement l'énergie des cristaux liquides, thèse de doctorat, Université d'Orsay, 1990.

[2] F. Alouges, A new algorithm for computing liquid crystal stable configurations: The harmonic mapping case, to appear in SIAM Journal on Numer. Anal. and prépublication du CMLA # 9515, Cachan, 1995. | MR

[3] F. Alouges and B.D. Coleman, Computation of stable equilibrium states of nematic phases between cylinders, in preparation.

[4] F. Bethuel, H. Brezis and J.-M. Coron, Relaxed energies for harmonie maps, Variational methods, H. Berestycki, J.-M. Coron and I. Ekeland Eds, Birkhäuser, Boston, Basel, Berlin, 1990, pp. 37-52. | MR | Zbl

[5] H. Brezis, J.M. Coron and E.H. Lieb, Harmonic maps with defects, Comm. Math. Phys., Vol. 107, 1986, pp. 649-705. | MR | Zbl

[6] R. Cohen and M. Taylor, Weak stability of the map x/|x| for liquid crystal, Comm. Partial Differential Equations, Vol. 15, 1990, pp. 675-692. | MR | Zbl

[7] R. Cohen, Perturbation techniques for liquid crystal functionals, lectures given at the Ecole Normale Supérieure de Cachan.

[8] R. Cohen, Fractional step methods for liquid crystals problems, PhD thesis, University of Minnesota, Minneapolis, 1988.

[9] R. Cohen and M. Luskin, Field-induced instabilities in Nematic liquid crystals, in Nematics: Mathematical and physical aspects, 1991, pp. 261-278. | MR | Zbl

[10] R. Cohen, R. Hardt, D. Kinderlehrer, S.Y. Lin and M. Luskin, Minimum energy configurations for liquid crystals: computational results, in Theory and application of liquid crystals, IMA 5, Springer-Verlag, New-York, 1987, pp. 99-122. | MR

[11] J.-M. Coron, J.-M. Ghidaglia and F. Hélein Eds, Nematics: Mathematical and physical aspects, Kluwer, Dordrecht, 1991. | MR | Zbl

[12] J. Eells and L. Lemaire, A report on harmonic maps, Bull. London Math. Soc., Vol. 10, 1978, pp. 1-68. | MR | Zbl

[13] J.L. Ericksen, Liquid crystals with variable degree of orientation, IMA preprint # 559, Minneapolis, 1989. | MR

[14] P.-G. De Gennes, The physics of liquid crystals, Clarendon Press, Oxford, 1974,

see also P.-G. De Gennes and J. Prost, The physics of liquid crystals, 2nd edition, International series of monographs (Physics) 83, Oxford Sci. Pub., Oxford, 1993.

[15] M. Giaquinta, Multiple integrals in the calculus ofvariations and nonlinear elliptic systems, Annals of mathematics studies, Princeton University Press, Princeton, 1983. | MR | Zbl

[16] K. Godev, Mathematical models of liquid crystals with variable degree of orientation, PhD thesis, Pennsylvania State University, 1994.

[17] R. Gulliver, Harmonic mappings, symmetry and computer graphics, preprint CMA-R- 52-88. | MR

[18] R. Gulliver, Fiber evolution in the Heat flow of harmonie maps, in Nematics: Mathematical and physical aspects, J.-M. Coron et al. eds (1991). | MR | Zbl

[19] R. Hardt, D. Kinderlehrer and F.-H. Lin, Existence and partial regularity of static liquid crystal configurations, Comm. Math. Phys., Vol. 105, 1986, pp. 547-570. | MR | Zbl

[20] R. Hardt, D. Kinderlehrer and F.-H. Lin, Stable defects of minimizers of constrained variational principles, Ann. Inst. Henri Poincaré, Vol. 5, 1988, pp. 297-322. | Numdam | MR | Zbl

[21] R. Hardt, D. Kinderlehrer and M. Luskin, Remarks about the mathematical theory of liquid crystals, Proc. CIRM, Trento, IMA, preprint 276. | MR

[22] R. Hardt and F.-H. Lin, A remark on H1 mappings, Manuscripta Math., Vol. 56, 1986, pp. 1-10. | MR | Zbl

[23] R. Hardt and D. Kinderlehrer, Mathematical questions of liquid crystal theory, in Theory and applications of liquid crystals, IMA Vol. 5, Springer-Verlag, New-York, 1987, pp. 161-166. | MR

[24] F. Hélein, Minima de la fonctionnelle énergie libre des cristaux liquides, C. R. Acad. Sci. Paris, Série I, t. 305, 1987, pp. 565-568. | MR | Zbl

[25] D. Kinderlehrer and B. Ou, Quadratic variation of liquid crystal energy at x/|x|, Proc. R. Soc. London A, Vol. 437, 1992, pp. 475-487. | MR | Zbl

[26] D. Kinderlehrer, B. Ou and N. Walkington, The elementary defects of the Oseen-Frank energy for a liquid crystal, C. R. Acad. Sci. Paris, Série I, Vol. 316, 1993, pp. 465-470. | MR | Zbl

[27] M. Kléman, Points, Lines and Walls, John Wiley, 1983. | MR

[28] F.-H. Lin, On nematic liquid crystals with variable degree of orientation, C. P. A. M., Vol. XLIV, 1991, pp. 453-468. | MR | Zbl

[29] F.-H. Lin, Une remarque sur l'application x/|x|, C. R. Acad. Sci. Paris, Série I, t. 305, 1987, pp. 529-531. | Zbl

[30] S.-Y. Lin, Numerical analysis for liquid crystal problems, PhD thesis, University of Minnesota, Minneapolis, 1987.

[31] J.-L. Lions, Equations différentielles opérationnelles et problèmes aux limites, Springer Verlag, 1961. | MR | Zbl

[32] L. Quivy, A minimization algorithm for a relaxed energy connected with the theory of liquid crystal, to appear in Mathematical models and methods in applied sciences, and Prépublication du CMLA # 9420, Cachan, 1994. | MR

[33] T. Riviere, Everywhere discontinuous harmonic maps, Prépublication du CMLA # 9302, Cachan, 1993. See also C. R. Acad. Sci. Paris, Série I, t. 314, 1992, pp. 719-723. | MR | Zbl

[34] R. Schoen and K. Uhlenbeck, A regularity theory for harmonic maps, J. Diff. Geom., Vol. 17, 1982, pp. 307-335. | MR | Zbl

[35] E. Virga, Variational Theories for liquid crystals, Chapman & Hall London, New York, 1994. | Zbl