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About poles of the resolvent,
in a model for a harmonic oscillator coupled

with massless scalar bosons
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Centre de Physique Theorique, Ecole Polytechnique, 91128 Palaiseau cedex, France.
E-mail : billion @ orphee.polytechnique.fr

Ann. Inst. Henri Poincaré,

Vol. 68. n° 1, 1998, Physique théorique

ABSTRACT. - We present a Hamiltonian coupling a harmonic oscillator to
a continuum of bosons for which the poles of the resolvent matrix elements
are not in one-to-one correspondence with the eigenstates of the isolated
oscillator. © Elsevier, Paris.

RESUME. - Nous presentons un modele de couplage d’un oscillateur
harmonique avec un continuum de bosons dans lequel il n’y a pas de
correspondance biunivoque entre les poles des elements de matrice de
la resolvante de 1’ hamiltonien et les etats propres de 1’ oscillateur isole.

© Elsevier, Paris.

1. INTRODUCTION

Rigorous mathematical treatments of the coupling of a harmonic oscillator
( with Hamiltonian a* a) to a continuum of massless scalar bosons (with
Hamiltonian Hrad) are interesting since they may provide information valid
for the atom-radiation interaction; such treatments have to take 2 aspects
of the problem into account: the number of bosons may be arbitrary and
the energy parameter classically describing the bosons continuously varies
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2 C. BILLIONNET

from 0. Friedrichs’ model [ 1 ] incorporated only one photon. In [2], at the end
of a study w ich follows Friedrichs’ one, Brownell sets a problem in which
many photons are taken into account but does not treat it, by lack of interest,
he writes. Indeed it is quite complicated. Nevertheless the result expected
is the following: every eigenvalue of the unperturbed Hamiltonian but the
lowest one disappear when a small coupling with the bosons is introduced.
This is proved to be true in some models, as for instance the one studied
by Arai in [3], for the harmonic oscillator. See also [4] on the subject. In
ref 16] a similar result is announced for the atom and the electromagnetic
field. The eigenvalues are expected to become complex numbers, poles
of certain matrix elements of the resolvent of the Hamiltonian. We are

personally interested in obtaining some more information about these poles.
This information will be seeked in the following way; in the same way
that the search for an eigenvector of an operator can be made easier if one
considers its restriction to a subspace in which the eigenvector happens to
lie, so may a pole of a matrix element of the resolvent of H be detected
by considering only some restriction of this operator. We have thus to find
subspaces of the Hilbert space of the system which permit to get interesting
results about the spectrum of the full Hamiltonian.

We are particularly interested in the question in the following aspect.
Is the structure of the unperturbed oscillator’s spectrum conserved in the
coupling, being understood that the poles of the matrix elements of the
Hamiltonian’s resolvent are shifted in the complex plane ? To be more
accurate, is there a one-to-one correspondence between the unperturbed
oscillator’s energy levels and the poles of the matrix elements of the
perturbed resolvent ? It is generally admitted that, at least when it is weak,
the coupling of an atom with the photon continuum shifts the atomic energy
levels in the complex plane; atomic levels thus get a certain width. However,
the following argument will show that the situation is perhaps not so simple.

If one studies, as an example for a Hamiltonian describing the above
oscillator’s coupling, the following operator

and is interested in its resolvent’s poles, one can see that, for  = 0,
the above mentioned one-to-one correspondence does not exist strictly
speaking; this fact will be recalled in the proof of Proposition 2 below. The
Hamiltonian is then a* a 0 1 + A(~ 0 c(g) + a 0 c* (g) ), consisting of a
part a*ag 1 and a perturbation A(a* 0 c(g) + a 0 c* (g) ) representing the
coupling of the oscillator with the zero energy bosons. The states consisting
of the oscillator in state with 0,1,... or N photons all have the
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3ABOUT POLES OF THE RESOLVENT

same (unperturbed) energy, and the coupling, for each of these states,

shifts that energy by a different amount. The oscillator in state 

with 0 photon has its energy shifted at a value which is the pole in z of
 nrad I G(A; z) I flrad &#x3E; in the neighbourhood of
z = 1; the oscillator in state with 1 photon has its energy shifted
at a different value, which is the pole in z of  Orad I

I ( c~* ) ~ ~os~ ~~ flrad &#x3E; in the neighbourhood of z = 1;

((a’~)’no5~ ~ nrad is coupled to c*(g)). Such displacements are
analogous to those called A.C.Stark shifts or light shifts, which depend on
the number of photons present together with the atom. But it must be noted
that in our problem there is no exterior electromagnetic field. Of course,
if the one-to-one correspondence is to be saved, this fact may provide
a way of selecting peculiar poles among the existing ones: certainly, the
state with 0 photon may be favoured. However, this way of proceeding
must not conceal the fact that the number of poles is infinitely greater than
the number of eigenvalues of the isolated oscillator’s Hamiltonian. The
unperturbed oscillator’s energy levels are not only shifted in the complex
plane, they are also split. (It must also be noted that the operator 0)
is not bounded from below - see formula ( 13)).
These remarks on the spectrum structure of the coupled system when
 = 0, incite us to undertake the study of the Hamiltonian when  # 0.

If a continuity argument can be made rigorous, when  is small we would
expect a situation similar to the one when JL = 0. That would later make
interesting the exact treatment of the physical JL = 1 case, as the question
could be asked whether there is still a splitting (now into several complex
poles) as in the JL = 0 case. If it were not possible to get the positions of
the different poles exactly, we might perhaps at least obtain information
about them, even qualitative, such as their number.
At present, the complete treatment of that question is not yet our goal;

to start off with, we will only study the Hamiltonian ( 1 ) for small with
the aim of showing that at least two different poles are expected near the
energy of the first excited level of the oscillator.

The continuity with respect to ~c is not obvious because the operator
is not a relatively bounded perturbation of 7:f(A.O). We overcome

this obstacle by restricting our analysis onto the subspace the

eigenspace of corresponding to the eigenvalue n, where

is the total number of particles (oscillator excitations plus photons) with
support  ~}. Note that if we choose supp g C {~p~ ~ K}
Vol. 68.n= 1-1998.



4 C. BILLIONNET

then H(~. ~.c) commutes with and thus H(~. ~c) leaves the subset
invariant. We analyse the restriction of ~c) onto and 

respectively. This has two advantages. First we can explicitly compute the
resolvent of the operator 0) on these subspaces. Secondly, 1 0 Hrad
is bounded on these subspaces. Thus the methods of regular perturbation
theory do apply to H(A. ~c) restricted to in spite of the unboundedness
of 1 0 Hrad when acting on the full Hilbert space.

2. NOTATIONS

The Hamiltonian ( 1 ) acts in the Hilbert space 7~ = where

Hosc = L2(R) and a* is the operator creating one degree of excitation.
The Hilbert space for the radiation is the Fock space built with the

1-boson ("photon") space L2 (IR) . c* (g) and c(g) are the creation and

annihilation operators for the radiation state consisting of one boson in
state g. We suppose g real, satisfying = 1 and supp.g C [0,oo[. Let
us recall the definition of Hrad : let be the n-boson space and Dn the

subspace in of functions cpn of n variables such that, for 0  i  n,

P -~ I ~~(pi....,P~) is in this last function is denoted by
We set

and define by . 2:~ 1 is defined on

S 0 Although the spectrum of an operator may depend strongly
on its domain of definition, we need not be precise on that question for the
moment, and we will not examine the question of the self-adjointness of
7:f(A.~) either. Indeed, as we said in the introduction, calculations following
in this paper will only concern restrictions of operators to subspaces of H
where 7~(A.~) is bounded and self-adjoint. (In these subspaces, there are
at most 2 "particles", and their states have a bounded energy; the vectors
are explicitly given after equation (5) below.) Considering these restrictions
will be sufficient to establish the interesting properties of the full operator.
We denote by z ) = [z - H(A. the resolvent for H, which

we suppose defined for sz &#x3E; 0.

Annales de l’Institut Henri Poincaré - Physique théorique



5ABOUT POLES OF THE RESOLVENT

We set

We introduce operators Ri, often called level shift operators, defined by

where we again suppose the existence of the inverse, for &#x3E; 0, and where

Setting

one gets [5]

These formulas will only be used on 2 subspaces left invariant by H; they
are the subspaces we talked about in the introduction, and are defined in
the following way:

Definition. - First let Ei denote the subspace generated by vectors of
the form Q9 03A9bos and wi with wi E ÐI, and E2 the one
generated by vectors of the form 2-1 2(a*)203A9osc ~ 03A9bos, a*03A9osc ~ cpl and

0 ~2? Di, D2. E1 (resp. E2) is the eigenspace of 
associated to the eigenvalue 1 (resp. 2). We then denote by E1.K the subset
of Ei obtained by requiring the function 03C61 to have its support contained
in [0,/~]; similarly, is defined by requiring the same property for (~i,
and supp. (~2 C [0, Ii: [ X [0, h:[.

Let us set d(A) = l/2(v’l+4A~ - 1). We have d(A)  À2 0

and A~, for small A. The splitting of the oscillator’s energy levels
will be measured by that quantity.

Vol. 68. n" 1-1998.



6 C. BILLIONNET

3. STATEMENT AND PROOF OF THE MAIN PROPOSITION

As was said in the introduction, the purpose of the present study is to show
that. at least for small each of the functions z - G (A. ~c. z ) . i = 1. 2,
has, in a neighbourhood of z = 1, a unique pole zi (~. ~c) which is simple,
and that and z~(~. ~c) are distincts. The proof will of course
rest on the fact that G1 ( a. 0.. ) and G~ ( ~. 0, . ) have two distinct poles
z 1 (A. 0 ) = 1 + and z? ( ~ . 0 ) = 1 in the neighbourhood of z = 1. (This
will be recalled below in the course of the proof of Proposition 2). To set
our point, it will then be sufficient to establish the continuity of ~c)
with respect to the parameter ~cc at p = 0.

THE MAIN PROPOSITION. - Let 03BB be in ]0, 1]. Let the support o,f’g be bounded
and ~; be a real such that g(p) = O~ if ~4. ~~. Then ~~c~ (~) and a
neighbourhood V of z = 1 s.t. 0   ~.cl(~) , each of the 2 functions
z - and z -~ G~(~, ~c, z)) has exactly 1 pole, respectively

~c) and z?(~. ~c), in this neighbourhood, these 2 poles being distinct.
In order to obtain the existence of the poles of G (~, ~c, .) near zi (~. 0),

we will use the following expression of Hurwitz theorem.
Let z ) be a function which is, for all ~.c s. t. 0  ~.c  analytic in

a disc D(zo. R), with center zo and radius R, not depending on ~. Let us
suppose that ~c ~ f (~c, z ) is continuous at 0, uniformly for z E D( Zo, R),
and that z -~ j(O. z ) does not vanish in D exept at zo, this zero being simple.
Then there exists a function 1], defined in ]O~ R[ and taking its values in R+,
such that: ~~ S.t. 0  £  R, E [0, ~(~)[, the function z ~ f( , z ) has
a unique zero which is simple in the disc D(zo, E). Let us denote it by 
moreover, the function ~,c ~ is right-continuous at ~.c = 0.

Let us set /,(A.~.~) == ~ 2014 i - To apply this theorem

to f = Ii = let us first show that, A being fixed, 7?i i(A.~..) is

analytic for z in a neighbourhood of 1 + d, and ~2.2(~-~. -) analytic for

Annales de l’Institut Henri Poincaré - Physique théorique
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z in a neighbourhood of I. Then we will prove that the 2 functions ~c ~
,u - z ) are continuous at 0, uniformly for z in these neighbourhoods.

PROPOSITION 1 . - Let .~ be in ~0- 1]. Let the support of g be bounded and
h. such that g(p) = 0, dp- fie Then there exists a constant C such that

z -.- R1.1(~. z) is analytic in Dl = D(1 + d(~). ~~), the disc with center
1 + and radius ~?, for i.c satisfying 0  ~.C  

z - R~., (~. z) is analytic in D2 = D( l, ~2/2) for 0  ~.c  ~2.
The functions R1,1(03BB, , z) (resp.  ~ R2,2(03BB, , z)) are continuous
at 0, uniformly for z in Dl (resp. D2 ).

Proof. - The case i = 1 can be treated separately thanks to the simplicity
of the expression

We suppose A E]O, 1]. The inequality 1 + ~(A) 2014 À2 &#x3E; 1/2 implies that, for
0   1 /2, there exists ai &#x3E; 0 such that

consequently, z - is analytic in The uniform

continuity in the  variable follows from

which implies

Let us examine now the i = 2 case.

a) First let us show that z - analytic in D2. Unlike in
the preceding case, we have to go back to the definition of ~~ ( ~. ~c. z )
(formula (3)), which gives formally

where we have set

Vol. 68. n" 1-1998.



8 C. BILLIONNET

and used 0 0 g. Without trying to
define the inverse operators in all H, we will give a meaning to this formula
by using the fact that is in E2.,~, E2,,~ being invariant by ,u),
Hrad and Q2.
[z - Q2~(~.0)Q2]i~ has an inverse for 3~ &#x3E; 0, which will be denoted

by L~(~. z). We shall see that [1 - has also an

inverse for 3~ &#x3E; 0. In order to obtain the analyticity properties of R2,2, we
both have to obtain analyticity properties of L2 and to control the existence
of the inverse of [1 - when z crosses the real
axis. To this end, let us give L2 explicitly on decomposable elements in E2
and look for a bound for the norm of its restriction to E~, the subset of E2
that these decomposable elements generate, by finite linear combinations.

For 3~ &#x3E; 0, setting ?i(A,2;) = 2:(~-1)-A~ and q(~, z) = z(z-1) -2~2,
we get:

if cpl is proportional to g,

if cp 1 is orthogonal to g,

if ;~1 and ~1 are orthogonal to g,

We used the notation f V g = 2’~(/(g)~ + ~0/).
Note that L2 (A, z) ~ 0, z)~E.,. If 11  2~~, ~q(~, z) &#x3E; ~? and

|q1(03BB,z)| ~ 03BB2/10; therefore, L2(03BB,z)~E’2 may be analytically continued in

Annales de l’Institut Henri Poincaré - Physique théorique
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D(l. 2 a~ ) . Let us denote this operator by L2 ( a, z ) . We are now looking
for an upper bound for its norm.

The 4 linear subspaces of E2 generated respectively by the 4 sets of
vectors

are invariant by L2 ( ~, z ) . On each of these orthogonal subspaces, the norm
of z) is bounded respectively by 2, ,B -2 (2+2’BvI2+,B2 /2), 10,B -2(2+
203BB2 + 03BB2/2), 2. Therefore, with b(A) = 11(2 + + À2), we then
get: Vz E D(1, 2 ~2), ~~L2(~~ C 2 + 

As L2 (~, z) is bounded, formulas (9) allow to define its extension to E2
and, as the bound is uniform for z in D ( l, 2 ~2 ), the extension is analytic
in that disc; it is the continuation of L2 ( ~, z ) .
We will now see the use of our hypothesis that the support of g is

bounded. Even on E2, Hrad is unbounded and thus we cannot make

p L~ (~, z)Q2HradQ2 small by taking ~c small. If g had a non-compact
support, we would then have to try and define the matrix elements of

[1 - by other means, for instance by an analytic
continuation. Indeed, in the i = 1 case, by supposing also analyticity
properties of g near the real axis, it is possible to move the integration
contour in (7); but it is not so simple in the i = 2 case. So let us suppose
that the support of g is bounded.

Since II  f x, is bounded and self-

adjoint ; z - is thus invertible for sz &#x3E; 0 and so is

[1 - . From

one deduces that

is invertible for z E D(l, 2 ~2 ~ if

Vol. 68. nS 1-1998.



10 C. BILLIONNET

Since 3bo &#x3E; 0 : bo 1  ( 2a2 + b( ~ ) ) -1, it follows that the first part of

Proposition 1 is true if C = (2B/5~o)~. Then we have

Moreover, for these values 2014~  2 l~~ (a. ,u; z) ~ 2 &#x3E; is analytic
in the disc D ( 1. 2 ~~ ) .

b) Let us now get to the continuity property. We have

Let us fix E, arbitrary but &#x3E; 0, and try to satisfy

We have

( 13) will be verified if, besides ( 11 ), ~.c satisfies

which is realized if

We thus get the continuity we looked for and the proof of Proposition 1

is achieved..

From the preceding results we shall infer information about the poles of
the functions G Z ( a . ~c .. ) in the neighbourhood of zi ( a , 0) .

Annales de l’Institut Henri Poincaré - Physique théorique



11ABOUT POLES OF THE RESOLVENT

PROPOSITION 2. - Let g be as in Proposition 1 and 03BB~]0,1]. For 0  E 

03BB2/2. there exists a function such that, for 0 ~  1(03BB,~),
z ---~ G~ (~. ~.c. z) has, for z in the neighbourhood D(1-f- d(~). E) d(~),
a unique pole zl (03BB, ), which is simple.
z - G~(~. z) has, for z in the neighbourhood E) of 1, a unique
pole z~(~, ~), which is simple.

Jl) is continuous at = 0; 0) = 1 + d(~), z~(~. 0) = 1.

Note. - zl (~, .) is real valued for small positive ~.

Proof - From the analyticity of R~.,(A,~,.) we have just obtained (in
the disc Di, for 0  ,u  C~-1 ~’ ), one deduces that of f 2 ( a , ~c, . ) . In the
same way, one gets the continuity of /(A, .,~) at 0, uniform for z E Di .
We can therefore apply Hurwitz theorem provided we prove that 0, . )
has a unique zero, simple, in Di, i. e. that, in that disc, G~(A,0..) has a
unique, simple, pole. Let us now give a proof of that fact.
The spectrum of the Hamiltonian H(A, 0) consists of all the real numbers

of the form s+ (1 + d(A)) - s_ d(~), where s+ and s- are non-negative
integers. This follows from the fact that, with o given by tan 20 = 2~,
the transformation

leads to the following form for the Hamiltonian:

Since the j3s satisfy

0) appears as the difference of 2 harmonic oscillator Hamiltonians;
their energies are respectively 1 + d( À) and d(A).
As we are here focussing on a neighbourhood of 1, we have but to

consider the values 1 + ( 1 - n) d, with n a non-negative integer. An easy
computation gives

which has 2 poles, at z = 1 + d(À) and z = -c~(A). We denote by 0)
the one close to 1.

Vol. 68. n= ° 1-1998.



12 C. BILLIONNET

We have

Besides,

which has 3 poles. The one close to 1 is denoted by z~ (~, 0); it is exactly
1, which does not depend on A. The 2 others are respectively 1 + x/1 + 4A2
and 1 - x/1 + 4A2. We have

Note that, for JL = 0, the perturbative series in powers of A for Ri and
Gi can be summed easily, the summation giving the above results; it is

not the case if JL i 0.

The preceding calculations establish what is important for us: the poles
0) = 1 + d(À) and z2(A, 0) = 1 are isolated in the discs Di and D2.

Proposition 2 is then going to follow from applying Hurwitz theorem to
the 2 functions 

For i = 1, we take po = ~"~/2, zo = 1 + d(À) and R = À2.
As 1 + ~(A) is the only zero of /i(A. 0 ~) in D1, a simple one, Proposition
1 and the Hurwitz theorem imply that there exists a function 7;i such that:
Ye s.t. 0  E  ~2 , E [0,7/i(6)[, the function z 2014~ has a

unique zero ~c) which is simple, in the disc D(1 + d(~), E).
we take /~o = ~o,2(~) = ~o = 1 and R = ~A~.

As 1 is the only zero of f~(~. 0, z) in D2, and is simple, Proposition 1

and the Hurwitz theorem imply that there exists a function q2 such that
B/6 s.t. 0  E  ~ ~~’, E [0, r~~ (E) ~, the function z ~ f2 (a, ~c, z) has a
unique zero z~(~, which is simple, in the disc D(l, E)

For 0  E  A~/2, taking = inf {?7i(6),?72(6)}, we get
Proposition 2..

Although it is not useful for our main proof, let us now show that

zl (~. ~c) is real-valued on [0, ~cl (~. E) [.
If 0  ~o.~ (~). x E [1 + d(À) - À2, 1 + d(a) +A~], and p E supp.

(g), then x - ~.p ~ 0. We have

Annales de l’Institut Henri Poincaré - Physique théorique
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and

Thus /i(A.~,2) is strictly positive if A  1. Therefore, for 0  ~c 
~o.i(~). ~ -~ f 1 ( ~, I~ ; x ) has one and only one (real) zero between 1 and
2; thus if 0  ,~  E) ( ~co,~(~)), this zero is the one we found in
the neighbourhood D(l + ~(A),e).

Proof of the main Proposition. - We just have to collect the preceding
results. Let us set V = D(l + d(~), ~2); it is a neighbourhood of l. Let us
choose 6i(A) satisfying 0  6i(A)  A~/2, and such that the discs D(Lei)
and D(l + d(~) ; E1 ) are disjoint and contained in V.

Setting = /~i(A,6i), given by Proposition 2, we see that, for

0  ~c  &#x3E;1 (A), ~c, .) (resp. G2 (~, .)) has a pole /-1) (resp.
z2(~, /-1)) in the disc D(1 + d(a), El) (resp. D(l, El)). As a consequence,
these two poles are distinct and our main proposition is proved..

4. DISCUSSION

We have to underline that this splitting of the pole of the unperturbed
resolvent when the coupling is introduced has just been proved with the
hypothesis that the support of the function g is compact. We wish now to
comment on that point.
When i = 1 and supp. g C [0, x], we saw that x ) is real when

x is real, &#x3E; 1 and   With such values, the pole in the x-
variable is an eigenvalue of the Hamiltonian, corresponding to a stable
state. If g has a non-compact support, then the integrant in formula (7)
has a pole at p = for every real positive value of z and all ~c &#x3E; 0.

Vol. 68. n= 1-1998.



14 C. BILLIONNET

Nevertheless. assuming analyticity properties for g allows to perform an
analytic continuation of z ) (and thus of z ) ) in the lower
half-plane of the z-variable. G will then take complex values for real z.

One may expect to be able to prove, with a method analogous to the one
we used here. that. in this case, G1 has a unique pole, complex this time,
in the considered region.
For the = 2 case, without the compacity hypothesis, we will also have

to use analytic continuations, but with other techniques. We leave that for
a later work.

Besides, we want to point out the following : Information about the poles
could be seeked by looking at the terms in the series of R in powers of A.
Unfortunately, one must be very careful doing so, as, unless a detailed study
has been done, it is not correct to attribute properties that the individual
terms may have to the sum of the series. For example, if  = 0, whether
g has a compact support or not, each term in the expansion of R2,2 has a
pole at z = 1, whereas the sum of the series does not have a pole at that
point; it has 2 poles at 1/2 ± 1/2B/1 + 8A2. Also, if g has compact support
and tL is small, we saw that R2.2 is analytic in a neighbourhood of z = 1,
whereas the term in second order of the expansion in powers of A~,

has a branch point at z = 1.

5. CONCLUSION AND PERSPECTIVES

We proved that, for small ~, the poles of the resolvent of the oscillator’s
Hamiltonian are split when the coupling with the radiation is considered.
To obtain this result, we had to use a hypothesis on the function g

describing the 1-photon state, but we think that this restriction is not

crucial. We expect the 2 poles we considered to become complex if the
support of g is no more compact, and our result, that they are distinct, to
be still true in that case.

Now the question is: is the result still valid for ~.c = I?

If the answer to that question is yes, it seems that, extended to atom-
radiation interaction, it would be in discrepancy with the usual picture of
atomic states; indeed, at least according to the usual way of seeing it, only 1

pole of the complete Hamiltonian resolvent is expected for each energy level

Annales de l’Institut Henri Poincaré - Physique théorique



15ABOUT POLES OF THE RESOLVENT

of the isolated atom. So, should we expect, in order to save that picture,
the different poles that would be associated to such a level for small p to
amalgamate in one unique pole when ~=17 This might occur when J1 gets
greater than a certain critical value. Or do the poles keep distinct ’? If this
is the case. one might argue that it is because of the 2 important features
of the problem we spoke about in the introduction: there exist photons
with energy arbitrarily close to 0, and their number may be arbitrary (at
least greater than 1 ). Indeed, the state consisting of an atom in a certain
energy level without any photon is thus almost degenerated with the same
atomic state accompanied by an arbitrary number of photons, if they have a
small energy; that might be a reason why the unperturbed pole would then
be split in many complex poles as in the  = 0 case, when the coupling
is introduced. Now, this degeneracy occurs if states c;f2rad are
taken into account and, physically, they may go to states 
2-photon states. This is why we think that the phenomenon we are thinking
of cannot be seen in models in which at most 1 photon is present.

Should we admit that an entire family of an infinite number of poles
is in correspondence with one unique eigenvalue of the isolated oscillator,
we have then to cope with a situation which seems new to me. Indeed,
whereas several widths may be associated to a unique atomic level, each
one corresponding to a particular desexcitation channel, up to now, to my
knowledge, it has not been considered that several energies, or poles, could
be associated to such a level. We insist that there is no exterior field to be

made responsible for that, exept the vacuum. Thus having the energy of an
unstable state depend on the number of photons it will emit in the future

might seem rather strange, even if it is true that the very definition of such
an energy was already a problem, due to the width of the level. We think
that the present study may cast new light on the subject. From another
point of view, the question may be presented in the following way: are
calculated or experimental profiles to be found peaked at different energies,
according to how many photons are emitted? This problem was already
examined in ref [7] in a perturbative way.
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