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Landau-Zener transitions through
small electronic eigenvalue gaps

in the Born-Oppenheimer approximation

George A. HAGEDORN * Alain JOYE **, ***

Department of Mathematics and Center for Statistical Mechanics and Mathematical Physics,
Virginia Polytechnic Institude and State University,

Blacksburg, Virginia 24061-0123, U.S.A.

Ann. Inst. Henri Poincaré,

68. n2 1. 1998. Physique théorique

ABSTRACT. - We study the propagation of molecular wave packets
through the simplest two types of avoided crossings of electronic energy
levels in a limit where the gap between the eigenvalues shrinks as the

nuclear masses are increased. For these types of avoided crossings, the
electron energy levels essentially depend on only one of the nuclear

configuration parameters, as is the case for all diatomic molecules. We
find that the transition probabilities are of order 1 and are determined by
the Landau-Zener formula. © Elsevier, Paris.

Key words: Born-Oppenheimer approximation, avoided crossings, molecular dynamics,
Landau-Zener transitions, adiabatic approximations.

RESUME. - Nous etudions la propagation de paquets d’ondes moleculaires
au travers des deux types les plus simples de croisements evites de

niveaux d’energie electroniques, dans la limite ou le gap entre ces valeurs
propres decroit lorsque les masses nucleaires augmentent. Pour ces types
de croisements evites, les niveaux d’energie electroniques ne dependent
essentiellement que d’un seul des parametres de configuration nucleaire,
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86 G. A. HAGEDORN AND A. JOYE

comme c’est le cas pour toute molecule diatomique. Nous observons que
les probabilites de transition sont d’ ordre un et sont determinees par la
formule de Landau-Zener. © Elsevier, Paris.

1. INTRODUCTION

Because it is not practical to solve the time-dependent Schrodinger
equation directly, the time-dependent Born-Oppenheimer approximation is
a principal tool for studying molecular dynamics. This approximation makes
use of the smallness of the parameter E, where E4 is the ratio of the mass
of an electron to the average of the masses of the nuclei.

In the standard time-dependent Born-Oppenheimer approximation, the

electrons and nuclei are treated separately, but their motions are coupled.
The electrons move much faster than the nuclei, and they quickly adjust
their motion in response to the relatively slow nuclear motion. The electrons
remain approximately in a quantum mechanical bound state as though the
nuclei were at fixed classical positions. This is the adiabatic approximation
for the electrons. The motion of the nuclei is accurately described by the
semiclassical approximation because the nuclei have large masses. The
electronic and nuclear motions are coupled because the energy level of
the electronic bound state depends on the positions of the nuclei, and
the electronic energy level plays the role of an effective potential for the
semiclassical dynamics of the nuclei.

This physical intuition is the basis for rigorous asymptotic expansions
of solutions to the molecular time-dependent Schrodinger equation [6], [8],
[ 11 ], [ 15], [ 16]. However, the validity of the approximation is dependent
upon the assumption that the electron energy level of interest is well isolated
from the rest of the spectrum of the electronic Hamiltonian.

Readers interested in the mathematical literature concerning the validity
of Born-Oppenheimer approximations should consult [2-4], [6], [8-13],
[15-17], [20], [32], [34-36], [38-42].
The assumption that the electron energy level of interest is isolated

from the rest of the spectrum can break down in various ways. For

example, two electron energy levels may cross one another for some nuclear
configurations. The effects of such crossings on molecular propagation have
been studied recently in generic minimal multiplicity situations [ 13], [16].

Annales de l’Institut Henri Poincaré - Physique théorique



87LANDAU-ZENER TRANSITIONS

[ 17]. Another situation where the standard approximation breaks down is
an "avoided crossing," where two electron energy levels approach close to
one another, but do not actually cross. Generic avoided crossings of energy
levels that have the minimal multiplicity allowed by the symmetry group
have been classified, and normal forms for the electron Hamiltonian near
these avoided crossings have been determined [ 18]. In [ 18] it is shown that

there are six distinct types of these avoided crossings.

In this paper we study molecular propagation through the simplest two
types of avoided crossings described in [18]. In these types of crossings,
the electron energy levels essentially depend on only one parameter in the
nuclear configuration space. In practice, this occurs for diatomic molecules,
where the electron energy levels depend only on the distance between the
nuclei because of rotational symmetry. There are two types of such avoided

crossings because of the possible presence of time reversing operators in the
symmetry group of the electron Hamiltonian. The details of the situation
dictate whether minimal multiplicity energy levels are of multiplicity 1

(Type 1 Avoided Crossings) or multiplicity 2 (Type 2 Avoided Crossings).

Our main result is the determination of what happens when a standard
time-dependent Born-Oppenheimer molecular wave packet propagates
through one of these avoided crossings if the gap size is on the order of E.
Using matched asymptotic expansions we explicitly compute approximate
solutions to the molecular Schrodinger equation. We observe that to leading
order in E, the Landau-Zener formula correctly describes the probabilities for
the system to remain in the original electronic level or to make a transition
to the other electronic level involved in the avoided crossing. To apply
the Landau-Zener formula in this case, one treats the nuclei as classical

point particles to obtain a time-dependent Hamiltonian for the electrons.
This leads to the study of the adiabatic limit of an effective time-dependent
system with two levels isolated in its spectrum. The transition probabilty
between the levels of such systems in the adiabatic limit is known for a

variety of situations [24-26], [21], [ 28-31]. In particular, when the levels
display an avoided crossing, the Landau-Zener formula is valid [ 14], [27],
[22], [37], [23]. In our case, we can apply the Landau-Zener formula to the
resulting time-dependent Schrodinger equation for the electrons alone.

More precisely, suppose there is a generic Type 1 or Type 2 avoided
crossing at nuclear configuration x = 0. In an appropriate coordinate system,
the gap between the electron energy levels is

68. rr 1- 1998.



88 G. A. HAGEDORN AND A. JOYE

with bl and ~3 non-zero. Suppose that a semiclassical nuclear wave packet
passes through the avoided crossing with velocity J-L, whose first component
is 0. Then the probability of remaining in the same electronic state is

for some p &#x3E; 0, and the probability of making a transition to the other
electronic level involved in the avoided crossing is

This result is completely different from what one obtains for the four
other types of avoided crossings, where the corresponding probabilities
depend on the particular nuclear wave packet involved [19]. The reason is
that in Type 1 and Type 2 avoided crossings, every part of the nuclear wave
packet passes through the same size minimum gap between the eigenvalues.
In Types 3, 4, 5, and 6 avoided crossings, different parts of the nuclear wave
packet feel different size gaps as they pass through the avoided crossing.
Our results are also completely different from those obtained in the

case of true level crossings [16]. For codimension 1 crossings, transition
amplitudes produced by crossings are of order E, not order 1 as in the present
paper. Furthermore, the dependence of transition amplitudes on the nuclear
velocity p is exponential as opposed to algebraic in the crossing case. Also,
although the problem we study in this paper is somewhat less singular than
the case of true crossings, the technical details are more difficult. This stems
largely from the complicated E dependence of the classical mechanics in
our problem. In [16], the classical mechanics had no E dependence.
The Hamiltonian for a molecular system with K nuclei and N - K

electrons has the form

Here xj ~ R
1 denotes the position of the jth particle, the mass of the jth

nucleus is (for 1  j  K), the mass of the jth electron is (for
K + 1  j  ~Bí)., and is the potential between particles i and j. For
convenience we assume = 1 for 1  j  K. We set n = Kl and

Annales de l ’lnstitut Henri Poincaré - Physique théorique



89LANDAU-ZENER TRANSITIONS

let ,i, = (II.. x~ , ..., E t~n denote the nuclear configuration vector.
We decompose as

This defines the electronic Hamiltonian that depends parametricaHy
on ~.

The time-dependent Schrodinger equation that we study is

for t in a fixed interval. The factor of E2 on the left hand side of this

equation indicates a particular choice of time scaling. Other choices could
be made, but this choice is the "distinguished limit" [1] ] that produces the
most interesting leading order solutions. With this scaling, all terms in the
equation play significant roles at leading order, and the nuclear motion has
a non-trivial classical limit. This is also the scaling for which the mean
initial nuclear kinetic energy is held constant as E tends to zero.

In this paper we are interested in the simplest types of electronic

transitions that are not associated with level crossings. If the Hamiltonian has
the form (1.5), then to arbitrarily high order in powers of E, the solutions
to (1.6) have no electronic transitions [8], [11]. There are no known

rigorous results about infinite order processes in the time-dependent Bom-
Oppenheimer approximation. However, in real molecular systems, only a
single value of E is usually of interest, and h(x) may have two eigenvalues
that approach one another with a minimum gap size that is of the same order
of magnitude as the relevant value of E. Under these circumstances, there
can be significant transitions between electon energy levels. To generate
useful rigorous information about these transitions without the difficulties of
going beyond infinte order, we assume the electron Hamiltonian of interest
can be embedded in an E-dependent family that has a crossing when E = 0.
This is in the same spirit as dealing with quantum mechanical resonances
as perturbations of eigenvalues embedded in the continuous spectrum.

Thus, we study solutions to ( 1.6) where the Hamiltonian has the form

with the assumption that E) has an Avoided Crossing according to
the following definition:

Vol. 68. rr 1-1998.
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DEFINITION. - Suppose h,(x, E) is a family~ of self-adjoint operators with
a fixed domain D in a Hilbert Space ~-L, for x E 0 and E E [0. a),
where n is an open subset of Rn. Suppose that the resolvent of h(x. E) is

a C~ function of x and E as an operator from ~ to D. Suppose E)
has eigenvalues EA(x. E) and E) that depend continuously
on x and E and are isolated from the rest of the spectrum of h(x. E).
Assume 0393 = [ x : EA(x, 0) = 0)} is a single point or non-
empty connected proper submanifold of 0, but that for all x E fl,

E) ~ EB(x. E) when E &#x3E; 0. Then we say h(x; E) has an Avoided
Crossing on r

Remark. - Realistic molecules have Coulomb potentials which give rise
to electron Hamiltonians that do not satisfy the smoothness assumptions
of this definition. However, one should be able to accommodate Coulomb

potentials by using the regularization techniques of [10], [ 11 ], [35].
Avoided Crossings of minimal multiplicity energy levels are classified in

[ 18], and normal forms for the electron Hamiltonian near F are derived.
When r has codimension 1, there are two types. To describe these, we
need some notation. Assume without loss of generality that 0 is a generic
point of r, and decompose

with

and

where P(x. E) is a spectral projector of h(x, E) associated with EA(x. E)
and E). In a Type 1 Avoided Crossing, r has codimension 1 and the

two eigenvalues each have multiplicity 1. There exists [ 18] an orthonormal

basis {fi(.r.6).~(~’-~)} of which is regular in (x, E) around
(0.0). In this basis, has the form

Annales de l’Institut Henri Poincaré - Physique theorique
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where 1..~ (x . E) _ ~ E)) is a regular function of (x. E)
around the origin and

where bi &#x3E; 0, c2 &#x3E; and

Type 2 Avoided Crossings are similar, except that the minimal

multiplicity of eigenvalues allowed by the symmetry group is 2. Near

one of these avoided crossings, one can choose an orthonormal basis

~~1(x. E), ~2(x, E), ~3(~, E), ~.~(x, E), ~ of which is regular in
(x, é) around (0,0). In this basis, has the form

where 13, ~, 8, and V are as above [18].

Throughout the paper we assume that the nuclei move transversally
through r at the point 0. This means the classical momentum associated
with their semiclassical wave packets has a non-trivial component in the
xi direction when their classical position is passing through 0 G F.

Precise statements of our results require a considerable amount of

notation and are presented in Theorems 3.1 and 4.1 for Type 1 and

Type 2 Avoided Crossings, respectively. We have stated these theorems
with the incoming state associated with the lower of the two relevant

levels. The analogous results with the incoming state associated with the
upper level are also true and proved in the same way, with the obvious
changes. Immediate corollaries of the two theorems are that the Landau-
Zener formula described above gives the correct transition probabilities in

vol. 68. n= V 1-1998.



92 G. A. HAGEDORN AND A. JOYE

each case. The main technique we use is matched asymptotic expansions. We
use the standard time-dependent Born-Oppenheimer approximate solutions
to the Schrodinger equation when the nuclei are far enough away from F.
We match these to "inner" solutions when the system is near r and the
standard approximation breaks down.
The paper is organized as follows: In Section 2 we discuss the

ordinary differential equations whose solutions will be used to describe the
semiclassical motion of the nuclei. In Section 3 we discuss semiclassical

nuclear wave packets and adiabatic motion of the electrons. We then prove
our main result for Type 1 Avoided Crossings, Theorem 3.1 by using
matched asymptotic expansions. In Section 4 we state our main result,
Theorem 4.1, for Type 2 Avoided Crossings and describe the modifications
of Section 3 that are required to prove this result.

1.1. A Convenient Change of Variables

We consider the Schrodinger equation

In order to get rid of E-dependence in the leading order of /3(.r, E) in ( 1.11 ),
we introduce the new variables

In terms of these new variables, the Schrodinger equation ( 1.15) for

becomes

in the limit E’-~0, with

where é’). E( é’)) is regular in (~’. E’) around (0,0) and C~(2) refers
to .r’ and E’. We introduce the fixed parameter r &#x3E; 0 and henceforth

Annales de I ’Institut Henri Poincaré - Physique théorique
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drop the primes on the new variables. We assume that hl (x, E) has the form
(1.11) with the following local behavior around x = 0 and 6=0:

with r &#x3E; 0.

2. Ordinary Differential Equations of Semiclassical Mechanics

In Section 3.1 we introduce semiclassical wave packets for the nuclei.
The leading order semiclassical motion for these wave packets is determined
by the solutions to certain systems of ordinary differential equations. These
involve classical mechanics, the classical action associated with a classical

trajectory, and the dynamics of certain matrices that describe the position
and momentum uncertainties of the wave packets. The goal of this section
is to study the small E behavior of these classical quantities that we need
for the asymptotic matching procedure that we use in Section 3 to prove
our main results.

We define

where x E E &#x3E; 0. Let aC (t) and ryC (t) be the solutions of the classical
equations of motion

with initial conditions

where the 0 ( E) term depends on whether C is A or B. Noticing that it

follows from ( 1.20) that ~,C3(x, , [q(z; and E)I are C~(0), and using
estimates of the type ,C3/ ,c3‘’ + q2 + 82  1, we see that

Vol. 68. n y 1-1998.
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This last condition implies the existence and uniqueness of the solutions
of (2.2).
The small E perturbation theory for solutions to (2.2) and (2.3) is not

quite simple because of the presence of two different time scales. However,
making use of the local expressions ( 1.20) in the potentials Y~ (x. E), we
derive an asymptotic formula which holds uniformly as both t and E tend to
zero. An alternative, more systematic way to overcome the difficulties due
to the different time scales is to use matched asymptotic expansions derived
in different time regimes which agree in a non-void matching window.

2.1. Small t and E Asymptotics

In order to get started, we need preliminary information about the

behavior of the solution of (2.2), (2.3) when both It I and E are small.

LEMMA 2.1. - Let and the solutions of (2.2) and (2.3). If
E and t are small enough, we have

as t--~0, uniformly in E.

Proof. - We mimic the proof of [ 16], p.82. Let us drop the index C in
the notation. We want to show that there exists T &#x3E; 0, such that

where u(t. and v (t. are uniformly bounded if E2 -f-t~ ~ T2, i.e., if
( t . E ) E BT . We let YT be the Banach space of pairs of bounded, continuous
in t, vector valued functions for (t, () G BT, with the norm

For cc ) E YT, we define

Annales de l’Institut Henri Poincaré - Physique theorique
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Due to the estimate (2.4), JF maps YT into YT, and furthermore, any fixed

point of 7 gives rise to a solution of (2.2), (2.3) by way of (2.5). If

we show that 7 is a strict contraction, it follows from the contraction

mapping principle that the solution of (2.2), (2.3) exists, is unique and
satisfies the assertion of the lemma. We show that this is the case for T

small enough. Let (u1 v1), (u2 v2) E YT and let us estimate the norm of

For the other component we use the mean value theorem

where l7(2) stands for the Hessian of V and

with E] 0, 1[. There will appear several constants, independent of
E in the sequel which we shall denote generically by c. By hypothesis,
~(-~) ~ cs2, j = 1, 2, uniformly in E and ~° -~- C~(E) with r~° &#x3E; 0.

Consequently, there exists a constant c, independent of E, such that

By explicit computation we get, (omitting the arguments (x. E))

Vol. 68, n 
c 1-1998.
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Using the behaviors (1.20) again and estimates of the type +,2 +
~) ~ 1, we get

where c is independent of (~r.6). Then,

with !K(~.6)~ = 0(~) and (2.12) we get

if s is small enough. Hence

for some c independent of E. Thus

Choosing T small enough so that  1 /2, we get the result. D

If we replace the potential VC (x, E) by V (x, E) which is regular as x and
we can go further in the asymptotics, as is easily checked.

LEMMA 2.2. - Let a(t) and be the solutions of (2.2) and (2.3) with
V~ (x. E) - V(x, E). If E and t are small enough, we have

as uniformly in E.

We can now go further in the asymptotics of the classical position and
velocity as both t and E tend to zero.

Annales de l ’lnstitut Henri Poincaré - Physique théorique
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PROPOSITION 2.1. - Let and be the solutions of (2.2) and (2.3).
For t and ~ small enough, we have the asymptotics

The asymptotics for in the same regime are obtained by termwise

differentiation of the above formulae up to errors O(t2 + 

Proof - By explicit computation we get, (omitting the arguments (x, E))

Introducing the local behaviors (1.20) and replacing x by a~(~), we make
use of lemma 2.1 and = O(EO) (so that O(~) = + to get

We get the result by explicit integration, taking into account the initial

conditions (2.3). D

Vol. 68. n v 1-1998.
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In the sequel, we will actually need such asymptotic behaviors for

matching in the time regime defined by t such that 
and t3/E~-~0. We will refer to this regime as the matching regime.
COROLLARY 2.1. - Further expanding, we get in the matching regime

t-0, and 

The asymptotics for in the same regime are obtained by termwise
differentiation of the above formulae up to errors C~ (t2 ) + /t3 ).

2.2. Classical Action Integrals

In Section 4 we construct quantum mechanical wave functions by using
matched asymptotic expansions. To do so, we need the small t ~ asymptotics
of classical action integrals. Let

and let S (t) be the same quantity for E) - V(x, E). From lemma
2.2 we easily deduce

LEMMA 2.3. - As 

uniformly in E.

Annales de l’Institut Henri Poincaré - Physique théorique
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From corollary 2.1, and the formula

we obtain

LEMMA 2.4. - In the regime E--~0, t-~0, and t3~E2-~O we have
the asymptotics

2.3. Different Initial Momenta

For later purposes, we assume from now on that the solution a(t) of
(2.2) with = V(~,6) is subject to the initial conditions

whereas the solutions aC ( t) satisfy

The 0(6) term must be included in our calculations because when the
electrons makes a transition from one energy level surface to another, the
nuclei must compensate by making a change in their kinetic energy in order
to conserve the total energy of the whole system.
We easily get the estimates

Vol. 68. n ~ 1-1998.
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and

COROLLARY 2.3. - When t--~0, t3/E2-~O and we have

2.4. Matrices A~ ( t ) and BC ( t )
The construction of the semiclassical wave packets that describe the

nuclei requires the computation of matrices which are defined by means
of classical quantities. Let A~ (t) and BC ( t) be the matrix solutions of the
linear system

where aC (t) is the solution of (2.2) and (2.3), with initial conditions

To do asymptotic matching, we need the small It I asymptotics of AC(t)
and B~ (t). We first determine the leading order behavior of (a~ (t), E)
for small It and c. From (2.13) and ( 1.20) it is easily seen that the Hessian
matrix

where we have used the same notation as earlier. More explicitly,

where

Annales de l ’lnstitut Henri Poincaré - Physique theorique
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when x is replaced by ac(t) = ~0(~)t + 0(t2), the error terms 0(3)
become + 6~) and we obtain

This last estimate allows us to find the leading order behavior of

1’~’~ (a~ (t). E) as E~0 and 

Consequently, for any positive E, the equation defining A~ and B~ is

regular as t-~0. Moreover,

PROPOSITION 2.2. - Let AC(t) and BC(t) be the solutions of (2.28) and
(2.29). For t and E small enough, we have

" ... - - .. , ,

uniformly in E.

Proof - Equations (2.28) and (2.29) are equivalent to the linear system

where 0 and 1L are the n x n zero and unity matrices. Moreover, the
generator is continuous and uniformly bounded for all t small enough, so
that the solution exists, is unique, and satisfies the integral equation

Introducing the norm

on the set of matrices depending on t and E, we get

68. n~ 1-1998.
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where, by virtue of (2.34),

uniformly in E. Consequently, we get the estimates

which imply

Hence, if t is so small that 1 - Ct &#x3E; 1/2,

and

uniformly in E. The use of this estimate and (2.34) in (2.36) yields

COROLLARY. - In the regime E-~ 0, and we have

Annales de l’lnstitut Henri Poincaré - Physique théorique
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3. Type 1 Avoided Crossings

We now have all the ingredients required to construct an asymptotic
solution to the equation

as E--~0. Let us describe the building blocks and give their main properties.

3.1. Semiclassical Nuclear Wave Packets

The semiclassical motion of the nuclei is described by means of wave

packets to be thought of as centered in phase space on the classical

trajectory, and of width O(e). These are the same wave packets that are
used in [7], [16].

Let n denote the dimension of the space of nuclear configurations. A
multi-index l = (~1~2? ’’-? In) is an ordered n-tuple of non-negative
integers. The order of l is defined to be |l| = 03A3nj=1 lj, and the factorial
of l is defined to be t ! = ( l l ! ) ( l2 ! ) - - - (In I). The symbol Dl denotes the
differential operator and the symbol x denotes
the monomial xl = xl11 xl22...xlnn. We denote the gradient of a function f
by f ~1~ and the matrix of second partial derivatives by j(2). We view Rn
as a subset of en, and let ei denote the ith standard basis vector in IRn or
~n. The inner product on IRn or en is (v, w) == E7 1 
The semiclassical wave packets we use are products of complex Gaussians

and generalizations of Hermite polynomials. The generalizations of the
zeroth and first order Hermite polynomials are

and

where v is an arbitrary non-zero vector in en. The generalizations of the
higher order Hermite polynomials are defined recursively as follows: Let
vi, .~2..... vm be m arbitrary non-zero vectors in en. Then

68. n’ 1-1998.
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One can prove [7] that these functions do not depend on the ordering
of the vectors VI. v, ... ~ v.,.,2 . Furthermore, if the space dimension is

n = 1 and the vectors ~2.. ~ are all equal to 1 ~ C~, then

~2... 2014 x ) is equal to the usual Hermite polynomial Hm (~ ) .
Now suppose A is a complex invertible n x n matrix. We define

~4~ = [~4~4*]~~, where A* denotes the adjoint of A. By the polar
decomposition theorem, there exists a unique unitary matrix U4, such

that A = A ~ Given a multi-index l, we define the polynomial

We can now define the semiclassical wave packets cpl (A, B, ~, a, ri, x). In
the Born-Oppenheimer approximation, the role of h is played by E2.

DEFINITION. - Let A and B be complex n x n matrices with the following
properties:

A and B are invertible; (3.5)

is symmetric ([real symmetric]+i[real symmetric}); (3.6)

Re BA-1 = 1 BA-1 ) + ( BA-1 ) ~ * is strictly positive definite; (3.7) )

Let a E 77 E and 1i &#x3E; 0. Then for each multi-index l we define

The choice of the branch of the square root of [det A~ -1 in this definition
depends on the context, and is determined by initial conditions and continuity
in time.

Remarks. - 1. We never use the functions cpl (A, B, h, a, r~, x) unless

conditions (3.5)-(3.8) are satisfied.

Annales de l’Institut Henri Poincaré - Physique théorique
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2. Condition (3.8) is equivalent to the more symmetrical condition

3. For fixed A, B, h, a, and ~, the functions c,ol (A, B. ~. a, 77, x) form
an orthonormal basis of £2 (Rn ). The proof can be found in [7].

4. Generically ~4 and UB are complex unitary matrices, and A and B
are Hermitian. In the special cases when they all happen to be real, the
functions 03C6l (A; B, h, a, 77, x) are simply rotated and dilated eigenfunctions
of the n dimensional harmonic oscillator.

5. The utility of the functions stems from their

remarkably beautiful behavior under Fourier transforms. If we define the
scaled Fourier transform to be

then

The only proof we know of this formula involves a messy induction on
Ill. The details may be found in [7].

6. The functions cpl (A, B, ~, a, q, x) separate the position and

momentum uncertainties from one another. For any given I, the position
uncertainty depends only on IAI and the momentum uncertainty depends
only on IBI. For example, when the space dimension is n = 1, the

position and momentum uncertainites of cpl (A, B, ~, a, q; x) are given by
[(~+ ~)~]~!~! I and respectively.

7. For technical reasons related to Remark 6, it is crucial that the matrix
B only appear in the exponent in the definition of cpl (A, B, h, a, q, x), and
not in the polynomial. By Remark 5, the matrix A only occurs in the

exponent of the Fourier transform. This turns out to be technically crucial,
also. The fulfillment of these technical requirements makes the Fourier
transform formula in Remark 5 all the more amazing.
The formulas for the functions B , h, a, ??, x) are rather complicated,

but the leading order semiclassical propagation of these wave packets is

very simple. Under mild hypotheses (e.g., V E C3 and bounded below),
the Schrodinger equation
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has an approximate solution of the form

Here O ( ~ 1 ~ 2 ) means that the exact solution and the approximate solution
agree up to an error whose norm is bounded by an i-dependent constant
times ~1~2 for t in a fixed bounded interval [-T, T]. The vectors a(t) and
q(t) satisfy the classical equations of motion

The function ,S’(t) is the classical action integral associated with the classical
path,

The matrices A(t) and B(t) satisfy

If A( -T ) and B ( -T ) satisfy conditions (3.5)-(3.8), then so do A(t)
and B(t) for each t. The proofs of the claims we have made about the

and other properties of the quantities introduced can
be found in [7].

Consider cpl defined in (3.9). Since the vectors and matrices and

B will be replaced in these functions by aC(t), r~~ (t), AC(t) and 
solutions of (2.2) and (2.28), we need to control the changes of cpl induced
by changes in a. 7/. A and B.

LEMMA 3.1. - We have, in the L2 ( ~n ) sense,

Proof - Let us introduce the temporary notation
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so that

Consider

We separately estimate each of the three differences on the right hand side
of this equation.
We compute the Frechet differential,

so that by the mean value theorem,

But, since by assumption Re is strictly positive definite, and

is a polynomial of degree III in its second variable, we have, 
small enough, and for any positive p,

6g, nÇ 1-1998.
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uniformly in B’ , a and a’. Thus, for some constant depending only on
A and B,

This estimate together with the Plancherel identity and (3.10) yield

Finally, using the notation given in (3.24),

where

Thus we can write

where P(A, y) is a polynomial of order III in y and [0,1] =5 to =

to (..4, B, a, a’, E) is the point where the supremum is reached. Hence, using
(3.25) again, we deduce

for some constant C’ ( A. B ) uniform in a, a’ and to. 0
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3.2 The Choice of Eigenvectors

In this section we present a procedure for choosing the electronic

eigenvectors and their phases. Although the electronic hamiltonian is

independent of time, it is convenient, since we deal with the time

dependent Schrodinger equation, to choose specific time dependent
electronic eigenvectors. Indeed, the electrons follow the motion of the nuclei
in an adiabatic way, so the suitable instantaneous electronic eigenvectors
must satisfy some parallel transport condition to take into account the

geometric phases arising in this situation. These eigenvectors thus depend
on the classical trajectories. Since they may become singular when the
corresponding eigenvalues are degenerate, or almost degenerate, we shall
define them for t in the outer regime. We shall have two sets of eigenvectors,
denoted by 03A6±c(x,t,~), where the label ±, refers to positive and negative
times.

Let ?7~(~) be the momentum solution of the classical equations of motion
(2.2) and (2.3). The normalized eigenvectors ~~ (x, t, E) are the solutions of

for C = A,B and Since the eigenvalues EA(x, E) and are

non-degenerate for any time t, t small enough, such vectors exist, are unique
up to an overall time independent phase factors and are eigenvectors of

associated with for any time, see [16]. Let us make the
construction of these eigenvectors more specific and give their small t and
small é asymptotics. We define the angles cp(x, é) and e(x, E) by

and construct static eigenvectors. Let

be the eigenvectors of associated with E), C == .~. ~ for

7T/2  8(x. E)  7r and

68. n ~ 1-1998.
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be the eigenvectors of for 0  8(x, E)  1f /2. The solutions of
(3.32) are of the form

where A~(:r.~,6) is a real valued function satisfying the equation

LEMMA 3.2. - Let be the momentum solution of the classical

equations of motion (2.2) and (2.3). There exist eigenvectors ~~ (x, t, é),
C = ,~4; B, such that

Proof - We give a proof for E) only; the other cases are similar.
In order to simplify the notation, we drop the indices A and +. Thus we
need determine such that 

.

where

Also, let a(t) = aA(t) and - for t &#x3E; 0. We introduce the

new variable

and the notation

In terms of these new variables, equation (3.41) for A reads
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with

We compute, dropping the arguments,

Since the = 1,2, are orthonormal, we get

As q, are all 0(0), we can write

It remains to estimate 

provided q(x, E) is different from zero. Hence, using ( 1.20) we get

The above computations are legitimate for

which implies

VoL 68. n" ‘ 1-1998.
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for some uniform constant c, and

as ~~0. Hence, if ~03C9 + O(~03BA),

uniformly in t and w. Taking the integration constant 0, we obtain

We get the desired result by means of (3.42) and the fact that 4$(x; E) =
0(0). D

The nuclear wave function is localized around the classical trajectory
in the semiclassical regime. Thus, in the outer temporal region, because
of the genericity condition 7~ &#x3E; 0, the major part of the nuclear wave
function will be supported away from the neighborhood where the levels
almost cross. Hence we can introduce a cutoff function which does not

significantly alter the solution and forces the support of the wave function
to be away from this neighborhood. We choose the support of the cutoff so
that the above lemma applies. Let F be a C° cutoff function

such that

The wave functions we construct below in the outer regime will be

multiplied by the regulating factor

where 8’  ~ for C = A. B (see below).

Remark. - If ~  2/3  h  1 - ç, the correction terms in the

above lemma tend to zero and the set I = 0 ( EK ) includes the set
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On the support of F,

and since = ~01 +0(6), where ~01 &#x3E; 0, we deduce

uniformly in E. Using this property we have

LEMMA 3.3. - For x in the support of C = A, B,
we have for t  0,

and for t &#x3E; 0,

Proof - It follows from (1.20), (3.63) and (3.64) that for t ~ 0,

Similarly,

hence

The result then follows from the identity
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We can describe the solution of the Schrodinger equation in the different
regimes introduced.

3.3. The Incoming Outer Solution

We assume that at the initial time -T, the wave function is given by a
semiclassical nuclear wave packet times an electronic function associated
with the B level. We consider the associated classical quantities determined
by the following initial conditions at t = 0:

where Ao and Bo satisfy the hypotheses in the definition of the functions wi.
Away from the avoided crossing of the electronic levels, the solution of the
Schrodinger equation is well approximated by standard time-dependent
Born-Oppenheimer wave packets. Close to the avoided crossing these

standard wave packets fail to approximate the solution. The following
lemma tells us how close to the avoided crossing time these standard wave
packets can be used as approximations.

LEMMA 3.4. - In the incoming outer time regime, -T  t  -E1-~, there
is an approximation t) of a solution of the Schrödinger equation
~ ( :~ . t) of the form

such that

where

in the sense, as 

Proof - The proof of this Lemma is very similar to that of Lemma
6.4 of [16]. For -T  t  20146~"~ and x in the support of the cut off
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function is bounded by a multiple of
6*~*~. Furthermore, for such x and t, a rather tedious calculation shows
that (2014 + 7/~ - ~~(j-.~.c) is bounded by a multiple of 6’~. Thus,
up to errors on the order of 6~, is equal to

where

and

where E) is the restriction of (h(x; E) - EB(x, to the range
of 

The expression (3.73) is a standard leading order Born-Oppenheimer
wave packet, and it suffices to show that it agrees with a solution of the

Schrodinger equation up to errors on the order of 6~. To prove this, we
explicitly compute

For -T  t  20146~ ~, terms in ~(x, t, E) that contain derivatives of F

are easily seen to have norms that grow at worst like powers of 

times factors that are exponentially small in E. Most of the remaining
terms in ~(x. t, E) are formally given on pages 105-108 of [16], with

(2014 + 1713 . in place of r~~ ~ in many expressions. A few other terms
arise from the acting on the electronic eigenfunctions in (3.73). Our
error term ((x. t. E) differs formally from that of Section 6 of [ 16] because
our eigenfunctions have time dependence and the ones in Section 6 of

[16] do not.
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After noting that numerous terms in C(.r. t. E) cancel with one another.
we estimate the remaining terms individually. This process is very similar
to that described on pages 108-110 of [16], except that there are a few
extra terms that contain time derivatives of the electronic eigenfunctions.
To estimate these terms we use arguments similar to those used in the proof
of lemma 3.2. Our avoided crossing problem is slightly less singular than
the crossing problem treated in [16]. So, it is not surprising that our error
term satisfies the same estimate

as the corresponding error term in Section 6 of [16].
We obtain the desired estimate by using the estimate (3.77) and lemma

3.3 of [ 16] . D

3.4. The Inner Solution

In the inner time regime, we look for an approximation constructed by
means of the classical quantities associated with the potential V(x; E). Let
a(t) and S(t) be the corresponding classical quantities satisfying the initial
conditions 

, , ,

In the rescaled variables

the Schrodinger equation reads

We seek an approximate solution of the form

with

where 03C8| (x. E) E ( I1- P(x. ~))H and f , g are scalar functions. Anticipating
exponential fall off of the solution, we insert (3.81 ) in (3.80) and neglect the
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derivatives of F. Making use of the decomposition ( 1.11 ) and eliminating
the overall "classical phase" and cut-off F, we get (dropping the arguments)

We assume the solutions have expansions of the form

with asymptotic scales to be determined by matching. We insert these

expansions in (3.83). Using the behaviors (1.20) and lemma 2.2 we verify
that the lowest order terms yield

on the support of F, where s) is the operator on the span

+ E~, E) ~ whose matrix in the basis

+ E~, E), + ey, E) ~ is given by

By matching the incoming outer solution, we obtain
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if   0.1.’ - -.m 2014 1. The spectrum of is

bounded away from 0 in a neighborhood of ( 0 . 0 ) . This implies

We split the remaining equation for the order (without
arguments)

into

by projection with P(x. E) and (i - P(x, E)). The second equation gives
= 0. The first one is equivalent to

The general solution of this equation can be found exactly in terms of
parabolic cylinder functions [5].

We define our inner approximation by taking
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w ith fo and go as above. To get a vector along the B level as t  0,
we need to impose

Using the asymptotic formulae in [5] with = C~ ~ )~0, due to
the cutoff, we have that

as s- - x, where A(y, s) E I~, so that

We further compute [5]

as s- - oo under the same conditions. We match s) with t),
the incoming outer solution of lemma 3.4, in the regime characterized by

with

Let us consider as t, E---70 and express the result in terms of

the new variables (~, s). From (aB(t) - = O(t2/E) = we

deduce that

and from proposition 2.2, its corollary and lemma 3.1, we get, in the

sense,
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We control the phases by means of the previous results on the asymptotic
behaviors of the corresponding classical quantities. We use corollary 2.3
to see that

We use corollary 2.1 and corollary 2.2 to estimate

as s- - x. Finally, by lemmas 3.2 and 3.3,

so that we can do the matching provided = 1 and

Using the fact that BB(t), E2, aBet), 0, x) is normalized, we see
that the difference between these expressions in the regime defined by
(3.99) is, in the sense,

for some positive p.
We need to check the validity of this inner approximation. We return to

the initial variables and set
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If we define ~(x; t) by

then we have

PROPOSITION 3.1. - In the L2(Rn) norm

Thus, by virtue of lemma 3.3 in [16], we have,

LEMMA 3.5. - The function 03A8I(x, t) is an approximation of a solution

t) of the Schrödinger equation for -~1-03BE  t  ~1-03BE, such that in
the sense,

as 

Proo.f. - To compute ~(x, t) we set

and define

where formally

It is readily checked that

Then, making use of
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the cancellations due to our choice of fo and go, and the mean value
theorem, we get (dropping the arguments)

where 9 e]0,1[. Then we use the facts that in the equation above we have

We can write
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Now fo. go are given by a gaussian times a polynomial in y times a parabolic
cylinder function. Asymptotically, these parabolic cylinder functions, their
first and second derivatives are of order O((s and

respectively, where s = ~(~). Since the factor in

C-~(g) takes care of the Jacobian, this yields the result. D

3.5 The Outgoing Outer Solution

Consider the classical quantities associated with the A level that satisfy
the following initial conditions at t = 0:

Note the difference in initial momentum with the classical quantities
associated with the B level, (3.69). As explained earlier, the corresponding
loss in kinetic energy equals the gain in potential energy, to leading order.
We look for an outgoing outer solution t), valid in the temporal
region  t  T as a linear combination of standard Born-Oppenheimer
wave packets. The first one is associated with the A level and initial

conditions (3.117), the other one is associated with the B level and initial
conditions (3.69). This function t) must match s ) in the

temporal layer

with (3.99). We proceed as above. We have [5]
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as s- + x and = (~(6~~)-~0. Equation (3.100) is also satisfied
if we replace the index B by A and since = Bo ( ~--) (see corollary
2.4), we have

On the other hand, using the notation (3.24), we can write

The equivalent of equation (3.101 ) for s- + oo and indices A and B is
satisfied with the same error terms. For the phases we have by corollary 2.3,

and

By corollary 2.1 and corollary 2.2,
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and

as s- + oo . B y lemmas 3.2 and 3.3

By matching and ’l/; 00 in the domain defined by (3.119) we get up to
terms of order in the sense

where

We show as above that this function is an approximate solution of the

Schrodinger equation.

LEMMA 3.6. - For any  t  T, the function t) is an

approximation of a solution of the Schrödinger equation 03C8(x, t), such that

1-1998.
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with

in the L2(Rn) sense, as E---70.

Proof - This lemma is proved by the same techniques used to prove
lemma 3.4. D

In lemmas 3.4, 3.5 and 3.6, the cut-off functions F appearing
in the approximations can be dropped without altering the estimates because
of the exponential decay of the gaussians they multiply.

Gathering the results of this last section and using the fact that the

evolution operator is unitary, we obtain our main theorem:

THEOREM 3.1. - Let be a hamiltonian such that is

characterized by (1.11) and (1.20), and let ~(x; t) be a solution of the
corresponding Schrödinger equation (1.15) such that

for some positive q, in the sense. Then, for any 0  ç  1 /3, there
exists a positive p such that in the limit E---70 we have for -T  t  -E1-~:

and for -~1-03BE  t  

is given in (3.129).
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As a direct corollary, we compute that the transition probability 
from the level B at t = -T to the level A at t = +T is given in the
limit by

As explained above, coincides with the answer provided by the
Landau-Zener formula where the gap is given by E. Of course, the

probability to remain on the B level satisfies

Remark. - The above formulae coincide with (1.2) and (1.3) when one
takes into account the change of variables performed at the end of the
first section. Indeed, it is not difficult to verify that in terms of the initial
variables (~, t) E jRn+l the classical position f(t) and momentum ~c(t) are
related to the classical position a(t’) and momentum r~(t’) associated with
the new variables (x’, t’) E 8~n~~ (1.16) by

which yields the result.

4. Type 2 Avoided Crossings

In this section we make a precise statement of our result for Type 2
Avoided Crossings and describe how to alter the arguments of Section 3 to
produce a proof. The theorem is proved by the same arguments as Theorem
3.1 except for the adiabatic motion of the degenerate electronic states.
We choose electronic eigenvectors by mimicking Section 3.2. We let

be the solution of the classical equations of motion (2.2) and (2.3).
The normalized eigenvectors, ~(~,6) and ~(~,~6), we wish to
construct are the orthonormal solutions of 

’

Vol. 68. n° 1-1998.



128 G. A. HAGEDORN AND A. JOYE

for C = A. B, j = 1. 2, k = 1,2, and t ~ 0. Since the eigenvalues E)
and E) are multiplicity 2 for any time t, t small enough, such vectors
exist, are unique up to an overall time-dependent unitary transformation,
and are eigenvectors of associated with for any time.
see [16]. Let us make the construction of these eigenvectors more specific
and give their small t and small E asymptotics.
As in Section 3.2, we define p(x, E) and O(x, E) by equations (3.33)-

(3.35), and construct the following static eigenvectors:

associated with Ec (x, E), C = A, B, for 7r /2  8(x, E)  x, and

for 0   7T/2. We then construct solutions of (4.1 ) by using

where the unitary matrices I~~ (x. t, E) play the roles of the phase factors
from Section 3.2. The matrices ~(.r~,6) satisfy differential equations
that lead to time ordered exponentials instead of simple exponentials, so
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there is not a simple analog of equation (3.41 ). However, the analog of
Lemma 3.2 is true.

LEMMA 4.1. - Let be the momentum solution of the classical

equations of motion (2.2) and (2.3). There exist eigenvectors ~~,~ (x. t, E),
C = A. B, j = 1, 2, such that

Proof - We give a proof for t, E) only. The other cases are
similar. In order to simplify the notation, we drop the indices A and +.
Thus we need to determine U(x, t, E) such that

for j = 1, 2, where

and

Let a(t) = aA(t), and for t &#x3E; 0, and introduce

In terms of these new variables, the equation for the entries of U has
the form

where the precise form for M(w, t, E) can be obtained from page 36 of
[16], with
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In analogy with the computations of Section 3.2, we compute

and

From this we can compute the matrix elements of M(w, t, E), which are
the analogs of (3.50). The terms of the form

and

both satisfy the estimates from the proof of Lemma 3.2. Because

{~1.~2.~3.~4} are mutually orthogonal, there is considerable

simplification of the terms

and
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From these formulas, we easily see that these terms have no singular
behavior for small t and fixed E &#x3E; 0. From the convergent Dyson series
for t. E) from equation (4.17) with initial condition O~ E) = Jl,
we then conclude that

This implies the lemma. D

The following analog of Lemma 3.3 is proved by the same techniques
we used to prove Lemma 3.3.

LEMMA 4.2. - For x in the support of C == ,,4, B,
we have for t  0,

and for t &#x3E; 0,

Our main result of this section is the following:
THEOREM 4. l. - Let h(x, E) be a hamiltonian such that is

characterized by (1.14) and (1.20). Let t) be a solution of the
corresponding Schrödinger equation (1.15) such that

for some positive q, in the sense. Then, for any 0  1/3, there
exists a positive p such that in the limit E---70 we have for -T  t  -E~-~:
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and for -E1-~  t  

where f o and go are defined in (3. 92), (3.96) and (3.105) with y =

(x - a(t))/E. s = t/E, and finally for  t  T:

where is given in (3.129). The corresponding statement with ~~,~ in
place of ~r,1 is true with and ’l/;2 replaced by ~3 and ~4, respectively.

The proof of this theorem is essentially the same as that for Theorem
3.1. There is no change in the semiclassical mechanics, and the lemmas
of this section handle the adiabatic electronic states for the outer solutions.

The inner solutions for the two different values of j do not mix with one
another to leading order because of the block diagonal form of ( 1.14).
One can, of course, take linear combinations of the two solutions

described by this theorem. The transition probabilities for Type 2 Avoided
Crossings are the same as those presented immediately after the statement
of Theorem 3.1 for Type 1 Avoided Crossings.
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