Asymptotic behavior in time of solutions to the derivative nonlinear Schrödinger equation
Annales de l'I.H.P. Physique théorique, Volume 68 (1998) no. 2, p. 159-177
@article{AIHPA_1998__68_2_159_0,
     author = {Hayashi, Nakao and Naumkin, Pavel I.},
     title = {Asymptotic behavior in time of solutions to the derivative nonlinear Schr\"odinger equation},
     journal = {Annales de l'I.H.P. Physique th\'eorique},
     publisher = {Gauthier-Villars},
     volume = {68},
     number = {2},
     year = {1998},
     pages = {159-177},
     zbl = {0934.35163},
     mrnumber = {1618664},
     language = {en},
     url = {http://www.numdam.org/item/AIHPA_1998__68_2_159_0}
}
Hayashi, Nakao; Naumkin, Pavel I. Asymptotic behavior in time of solutions to the derivative nonlinear Schrödinger equation. Annales de l'I.H.P. Physique théorique, Volume 68 (1998) no. 2, pp. 159-177. http://www.numdam.org/item/AIHPA_1998__68_2_159_0/

[1] A. Friedman, Partial Differential Equations, New York, Holt-Rinehart and Winston, 1969. | MR 445088 | Zbl 0224.35002

[2] T. Cazenave, Equation de Schrödinger non lineairés en dimension deau, Proceeding of the Royal Society of Edinburgh, Vol. 84 A, 1979, pp. 327-346. | MR 559676 | Zbl 0428.35021

[3] J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case; II Scattering theory, general case, J. Funct. Anal., Vol. 32, 1979, pp. 1-71. | MR 533218 | Zbl 0396.35028

[4] J. Ginibre and T. Ozawa, Long range scattering for nonlinear Schrödinger and Hartree equations in space dimension n ≥ 2, Commun. Math. Phys., Vol. 151, 1993, pp. 619-645. | MR 1207269 | Zbl 0776.35070

[5] J. Ginibre, T. Ozawa and G. Velo, On the existence of wave operators for a class of nonlinear Schrödinger equations, Ann. IHP (Phys. Théor), Vol. 60, 1994, pp. 211-239. | Numdam | MR 1270296 | Zbl 0808.35136

[6] N. Hayashi, The initial value problem for the derivative nonlinear Schrödinger equation in the energy space, J. Nonlinear Anal. T.M.A., Vol. 32, 1993, pp. 823-833. | MR 1214746 | Zbl 0787.35099

[7] N. Hayashi and T. Ozawa, On the derivative nonlinear Schrödinger equation, Physica D, Vol. 55, 1992, pp. 14-36. | MR 1152001 | Zbl 0741.35081

[8] N. Hayashi and T. Ozawa, Finite energy solutions of nonlinear Schrödinger equations of derivative type, SIAM J. Math. Anal., Vol. 25, 1994, pp. 1488-1503. | MR 1302158 | Zbl 0809.35124

[9] N. Hayashi and T. Ozawa, Modified wave operators for the derivative nonlinear Schödinger equations, Math. Annalen, Vol. 298, 1994, pp. 557-576. | MR 1262776 | Zbl 0791.35124

[10] N. Hayashi and M. Tsutsumi, L∞-decay of classical solutions for nonlinear Schrödinger equations, Proceeding of the Royal Society of Edinburgh, Vol. 104A, 1986, pp. 309-327. | MR 877907 | Zbl 0651.35014

[11] N. Hayashi and Y. Tsutsumi, Remarks on the scattering problem for nonlinear Schrödinger equations, Differential Equations and Mathematical Physics, Lecture Note in Mathematics, Edited by I.W. Knowles and Y. Saito, Springer-Verlag, Vol. 1285, 1986, pp. 162-168. | MR 921265 | Zbl 0633.35059

[12] N. Hayashi, K. Nakamitsu and M. Tsutsumi, On solutions of the initial value problem for the nonlinear Schrödinger equations in one space dimension, Math. Z., Vol. 192, 1986, pp. 637-650. | MR 847012 | Zbl 0617.35025

[13] N. Hayashi, K. Nakamitsu and M. Tsutsumi, On solutions of the initial value problem for nonlinear Schrödinger equations, J. Funct. Anal., Vol. 71, 1987, pp. 218-245. | MR 880978 | Zbl 0657.35033

[14] N. Hayashi and P.I. Naumkin, Large time asymptotics of solutions to the generalized Benjamin-Ono equation, Trans. A.M.S. (to appear). | MR 1491867 | Zbl 0903.35066

[15] S. Katayama and Y. Tsutsumi, Global existence of solutions for nonlinear Schrödinger equations in one space dimension, Commun. P.D.E., Vol. 19, 1994, pp. 1971-1997. | MR 1301179 | Zbl 0832.35130

[16] D.J. Kaup and A.C. Newell, An exact solution for a derivative nonlinear Schrödinger equation, J. Math. Phys., Vol. 19, 1978, pp. 789-801. | MR 464963 | Zbl 0383.35015

[17] A. Kundu, Landau-Lifshitz and higher-order nonlinear systems gauge generated from nonlinear Schrödinger type equations, J. Math. Phys., Vol. 25, 1984, pp. 3433-3438. | MR 767547

[18] W. Mio, T. Ogino, K. Minami and S. Takeda, Modified nonlinear Schrödinger equation for Alfven waves propagating along the magnetic field in cold plasmas, J. Phys. Soc. Japan, Vol. 41, pp. 265-271. | MR 462141

[19] E. Mjølhus, On the modulational instability of hydromagnetic waves parallel to the magnetic field, J. Plasma Phys., Vol. 16, 1976, pp. 321-334.

[20] P.I. Naumkin, Asymptotics for large time for nonlinear Schrödinger equation, The Proceedings of the 4th MSJ International Reserch Institute on "Nonlinear Waves", GAKUTO International Series, Mathematical Sciences and Applications, Gakkotosho, 1996 (to appear). | MR 1602654 | Zbl 0890.35145

[21] P.I. Naumkin, Asymptotics for large time of solutions to nonlinear Schrödinger equations (in Russian), Izvestia RAS, ser. Math. (to appear).

[22] T. Ozawa, Long range scattering for nonlinear Schrödinger equations in one space dimension, Commun. Math. Phys., Vol. 139, 1991, pp. 479-493. | MR 1121130 | Zbl 0742.35043

[23] M. Tsutsumi and I. Fukuda, On solutions of the derivative nonlinear Schrödinger equation. Existence and uniqueness theorem, Funkcialaj Ekvacioj, Vol. 23, 1981, pp. 259-277. | MR 621533 | Zbl 0478.35032

[24] M. Tsutsumi and I. Fukuda, On solutions of the derivative nonlinear Schrödinger equation II, Funkcialaj Ekvacioj, Vol. 24, 1981, pp. 85-94. | MR 634894 | Zbl 0491.35016

[25] Y. Tsutsumi, Scattering problem for nonlinear Schrödinger equations, Ann. IHP (Phys. Théor.), Vol. 43, 1985, pp. 321-347. | Numdam | MR 824843 | Zbl 0612.35104