Matrice de scattering et résonances associées à une orbite hétérocline
Annales de l'I.H.P. Physique théorique, Volume 69 (1998) no. 1, pp. 31-82.
@article{AIHPA_1998__69_1_31_0,
     author = {Fujii\'e, Setsuro and Ramond, Thierry},
     title = {Matrice de scattering et r\'esonances associ\'ees \`a une orbite h\'et\'erocline},
     journal = {Annales de l'I.H.P. Physique th\'eorique},
     pages = {31--82},
     publisher = {Gauthier-Villars},
     volume = {69},
     number = {1},
     year = {1998},
     zbl = {0916.34071},
     mrnumber = {1635811},
     language = {fr},
     url = {http://archive.numdam.org/item/AIHPA_1998__69_1_31_0/}
}
TY  - JOUR
AU  - Fujiié, Setsuro
AU  - Ramond, Thierry
TI  - Matrice de scattering et résonances associées à une orbite hétérocline
JO  - Annales de l'I.H.P. Physique théorique
PY  - 1998
SP  - 31
EP  - 82
VL  - 69
IS  - 1
PB  - Gauthier-Villars
UR  - http://archive.numdam.org/item/AIHPA_1998__69_1_31_0/
UR  - https://zbmath.org/?q=an%3A0916.34071
UR  - https://www.ams.org/mathscinet-getitem?mr=1635811
LA  - fr
ID  - AIHPA_1998__69_1_31_0
ER  - 
%0 Journal Article
%A Fujiié, Setsuro
%A Ramond, Thierry
%T Matrice de scattering et résonances associées à une orbite hétérocline
%J Annales de l'I.H.P. Physique théorique
%D 1998
%P 31-82
%V 69
%N 1
%I Gauthier-Villars
%G fr
%F AIHPA_1998__69_1_31_0
Fujiié, Setsuro; Ramond, Thierry. Matrice de scattering et résonances associées à une orbite hétérocline. Annales de l'I.H.P. Physique théorique, Volume 69 (1998) no. 1, pp. 31-82. http://archive.numdam.org/item/AIHPA_1998__69_1_31_0/

[B-C-D]1 P. Briet, J.-M. Combes and P. Duclos, On the location of resonances for Schrödinger operators in the semiclassical limit I: Resonances free domains, Journal of Mathematical Analysis and Applications, vol. 126, 1987, n.1. | MR | Zbl

[B-C-D]2 P. Briet, J.-M. Combes and P. Duclos, On the location of resonances for Schrödinger operators in the semiclassical limit II: Barrier top resonances, Comm. in Partial Differential Equations, vol. 12, 2, 1987, p.201-222. | MR | Zbl

[De] J.M. Delort, F.B.I. transformation, Lecture Notes in Maths n.1522, Springer-Verlag, 1993. | MR

[Du] P. Duclos, A global approach to the location of quantum resonances, Operator Theory: Advances and Applications, vol.57, Birkhäuser Verlag, 1992. | MR | Zbl

[Ec] J. Ecalle, Les Fonctions résurgentes, Publications Mathématiques d'Orsay, 1981, p. 81-05.

[Fu-Ra] S. Fujiié and T. Ramond, Semiclassical resonances for the radial Schrödinger equation at fixed angular momentum, en préparation.

[Ge-Gr] C. Gérard and A. Grigis, Precise estimates of tunneling and eigenvalues near a potential barrier, J. of Diff. Equations, vol. 42, 1988, p.149-177. | MR | Zbl

[He-Sj]1 B. Helffer and J. Sjöstrand, Résonances en limite semiclassique, Mémoires de la Société Mathématique de France, n. 24,25, 1985.

[He-Sj]2 B. Helffer and J. Sjöstrand, Semiclassical analysis of Harper's equation III, Bull. Soc. Math. France, Mémoire n.39, 1990.

[Ko] Korsch, Semiclassical theory of resonances, Lecture Notes in Physics No. 211, Springer, 1987.

[L-T-M] S.Y. Lee, N. Takigawa and C. Marty, A semiclassical study of optical potentials: Potential resonances, Nuclear Physics A308, 1978, p.161-188.

[Mä] C. März, Spectral asymptotics for Hill's equation near the potential maximum, Asymptotic Analysis 5, 1992, p.221-267. | MR | Zbl

[Po] C. Pommerenke, Univalent functions, Studia Mathematica XXV, Vandenhoeck and Ruprecht, Göttingen 1975. | MR | Zbl

[Ra] T. Ramond, Semiclassical study of quantum scattering on the line, Communications in Mathematical Physics Vol. 177, 1996, p.221-254. | MR | Zbl

[Sj]1 S. Sjöstrand, Semiclassical resonances generated by non-degenerate critical points, Lecture Notes in Maths n.1256, Springer, 1987, p.402-429. | Zbl

[Sj]2 S. Sjöstrand, Singularités analytiques microlocales, Astérisque n.95, 1982. | Zbl

[Sj-Zw] S. Sjöstrand and M. Zworski, Complex scaling and distribution of scattering poles, Journal of the American Mathematical Society, Vol. 4, 1991. | MR | Zbl

[Vo] A. Voros, The Return of the Quartic Oscillator. The Complex WKB Method. Ann. Inst. H. Poincaré Phys. Théor., vol. 39 (3), (1983). | EuDML | Numdam | MR | Zbl