A Morse theory for light rays on stably causal lorentzian manifolds
Annales de l'I.H.P. Physique théorique, Tome 69 (1998) no. 4, pp. 359-412.
@article{AIHPA_1998__69_4_359_0,
     author = {Giannoni, F. and Masiello, A. and Piccione, P.},
     title = {A {Morse} theory for light rays on stably causal lorentzian manifolds},
     journal = {Annales de l'I.H.P. Physique th\'eorique},
     pages = {359--412},
     publisher = {Gauthier-Villars},
     volume = {69},
     number = {4},
     year = {1998},
     mrnumber = {1659591},
     zbl = {0920.58019},
     language = {en},
     url = {http://archive.numdam.org/item/AIHPA_1998__69_4_359_0/}
}
TY  - JOUR
AU  - Giannoni, F.
AU  - Masiello, A.
AU  - Piccione, P.
TI  - A Morse theory for light rays on stably causal lorentzian manifolds
JO  - Annales de l'I.H.P. Physique théorique
PY  - 1998
SP  - 359
EP  - 412
VL  - 69
IS  - 4
PB  - Gauthier-Villars
UR  - http://archive.numdam.org/item/AIHPA_1998__69_4_359_0/
LA  - en
ID  - AIHPA_1998__69_4_359_0
ER  - 
%0 Journal Article
%A Giannoni, F.
%A Masiello, A.
%A Piccione, P.
%T A Morse theory for light rays on stably causal lorentzian manifolds
%J Annales de l'I.H.P. Physique théorique
%D 1998
%P 359-412
%V 69
%N 4
%I Gauthier-Villars
%U http://archive.numdam.org/item/AIHPA_1998__69_4_359_0/
%G en
%F AIHPA_1998__69_4_359_0
Giannoni, F.; Masiello, A.; Piccione, P. A Morse theory for light rays on stably causal lorentzian manifolds. Annales de l'I.H.P. Physique théorique, Tome 69 (1998) no. 4, pp. 359-412. http://archive.numdam.org/item/AIHPA_1998__69_4_359_0/

[1] R.R. Adams, Sobolev spaces. Ac. Press. New York, 1975. | MR | Zbl

[2] F. Antonacci and P. Piccione, A Fermat principle on Lorentzian manifolds and applications, Appl. Math. Lett., Vol. 9, 1996, pp. 91-96. | MR | Zbl

[3] J.K. Beem and P.H. Ehrlich and K.L. Easley, Global Lorentzian Geometry. Marcel Dekker. New York, 1996. | MR | Zbl

[4] V. Benci, A new approach to Morse-Conley theory and some applications, Ann. Mat. Pura ed Appl., Vol. 158, 1991, pp. 231-305. | MR | Zbl

[5] R. Bott, Lectures on Morse Theory old and new, Bull. Am. Math. Soc., Vol. 7, 1982, pp. 331-358. | MR | Zbl

[6] A. Capozzi, D. Fortunato and C. Greco, Null geodesics on Lorentz manifolds, in Nonlinear variational problems and partial differential equations, Isola d'Elba 1990 (A. MARINO and M.K.V. MURTHY eds.), pp. 81-84. Pitman research notes in Mathematics, Vol. 320. Longman, London 1995. | MR | Zbl

[7] K. Deimiling, Nonlinear Functional Analysis. Springer-Verlag, Berlin 1985. | MR | Zbl

[8] D. Fortunato, F. Giannoni and A. Masiello, A Fermat principle for stationary space-times with applications to light rays, J. Geom. Phys., Vol. 15, 1995, pp. 159-188. | MR | Zbl

[9] A. Germinario, Morse Theory for light rays without nondegeneration assumptions, Nonlinear World, Vol. 4, 1997, pp. 173-206. | MR | Zbl

[10] F. Giannoni and A. Masiello, Morse Relations for geodesics on stationary Lorentzian manifolds with boundary, Top. Meth. in Nonlinear Anal., Vol. 6, 1995, pp. 1-30. | MR | Zbl

[11] F. Giannoni and A. Masiello, On a Fermat principle in General Relativity. A Ljustemik-Schnirelmann theory for light rays, Ann. Mat. Pura Appl., in press. | Zbl

[12] F. Giannoni and A. Masiello, On a Fermat principle in General Relativity. A Morse Theory for light rays, Gen. Rel. Grav., Vol. 28, 1996, pp. 855-897. | MR | Zbl

[13] F. Giannoni, A. Masiello and P. Piccione, A variational theory for light rays on causally stable Lorentzian manifolds: Regularity and multiplicity results, Comm. Math. Phys., Vol. 187, 1997, pp. 375-415. | MR | Zbl

[14] F. Giannoni, A. Masiello and P. Piccione, A variational theory for light rays on causally stable Lorentzian manifolds II: Existence and multiplicity results, preprint n. 16/96 Dip. Mat. Univ. Bari, 1996.

[15] S.W. Hawking and G.F. Ellis, The Large Scale Structure of Space-Time. Cambridge University Press, London/New York, 1973. | MR | Zbl

[16] L.L. Kelley, General Topology. Van Nostrand, Princeton 1955. | MR | Zbl

[17] W. Klingenberg, Riemannian Geometry. W. de Gruyter, Berlin/New York, 1982. | MR | Zbl

[18] I. Kovner, Fermat principles for arbitrary space-times, Astrophys. J., Vol. 351, 1990, pp. 114-120.

[19] T. Levi-Civita, Fondamenti di Meccanica Relativistica. Zanichelli, Bologna 1928. | JFM

[20] A. Masiello, Variational Methods in Lorentzian Geometry. Pitman Research Notes in Mathematics, 309. Longman, London 1994. | MR | Zbl

[21 ] A. Masiello and P. Piccione, Shortening null geodesics in stationary Lorentzian manifolds. Applications to closed light rays, Diff. Geom. Appl., Vol. 8, 1998, pp. 47-70. | MR | Zbl

[22] J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems. Springer-Verlag, Berlin, 1989. | MR | Zbl

[23] R. Mckenzie, A gravitational lens produces an odd number of images, J. Math. Phys., Vol. 26, 1985, pp. 1592-1596. | MR | Zbl

[24] J. Milnor, Morse Theory. Princeton University Press, Princeton, 1963. | MR | Zbl

[25] M. Morse, The Calculus of Variations in the Large. Coll. Lect. Am. Math. Soc., Vol. 18, 1934. | JFM | Zbl

[26] B. O'Neill, Semi-Riemannian Geometry with applications to Relativity. Acad. Press, New-York-London, 1983. | Zbl

[27] R. Palais, Morse Theory on Hilbert manifolds, Topology, Vol. 2, 1963, pp. 299-340. | MR | Zbl

[28] V. Perlick, On Fermat's principle in General Relativity: I. The general case, Class. Quantum Grav., Vol. 7, 1990, pp. 1319-1331. | MR | Zbl

[29] V. Perlick, Infinite dimensional Morse Theory and Fermat's principle in general relativity. I, J. Math. Phys., Vol. 36, 1995, pp. 6915-6928. | MR | Zbl

[30] A. Petters, Morse Theory and gravitational microlensing, J. Math. Phys., 1992, Vol. 33, pp. 1915-1931. | MR

[3 1 ] A. Petters, Multiplane gravitational lensing. I. Morse Theory and image counting, J. Math. Phys., Vol. 36, 1995, pp. 4263-4275. | MR | Zbl

[32] A. Petters, Multiplane gravitational lensing. II. Global Geometry of caustics, J. Math. Phys., Vol. 36, 1995, pp. 4276-4295. | MR | Zbl

[33] P. Schneider, J. Ehlers and E. Falco, Gravitational lensing. Springer, Berlin, 1992.

[34] J.P. Serre, Homologie singuliere des espaces fibres, Ann. Math., Vol. 54, 1951, pp. 425-505. | MR | Zbl

[35] E.H. Spanier, Algebraic Topology. Mc Graw Hill. New York, 1966. | MR | Zbl

[36] K. Uhlenbeck, A Morse Theory for geodesics on a Lorentz manifold, Topology, Vol. 14, 1975, pp. 69-90. | MR | Zbl

[37] H. Weyl, Zur Gravitationstheorie, Annln. Phys., Vol. 54, 1917, pp. 117-145. | JFM