Global properties of vacuum states in de Sitter space
Annales de l'I.H.P. Physique théorique, Volume 70 (1999) no. 1, p. 23-40
@article{AIHPA_1999__70_1_23_0,
     author = {Borchers, H. J. and Buchholz, Detlev},
     title = {Global properties of vacuum states in de Sitter space},
     journal = {Annales de l'I.H.P. Physique th\'eorique},
     publisher = {Gauthier-Villars},
     volume = {70},
     number = {1},
     year = {1999},
     pages = {23-40},
     zbl = {0916.53045},
     mrnumber = {1671209},
     language = {en},
     url = {http://www.numdam.org/item/AIHPA_1999__70_1_23_0}
}
Borchers, H. J.; Buchholz, D. Global properties of vacuum states in de Sitter space. Annales de l'I.H.P. Physique théorique, Volume 70 (1999) no. 1, pp. 23-40. http://www.numdam.org/item/AIHPA_1999__70_1_23_0/

[1] W.G. Unruh, Notes on black hole evaporation, Phys. Rev., Vol. D14, 1976, pp. 870-892.

[2] G.W. Gibbons and S. Hawking, Cosmological event horizons, thermodynamics and particle creation, Phys. Rev., Vol. D15, 1977, pp. 2738-2751. | MR 459479

[3] J.J. Bisognano and E.H. Wichmann, On the duality condition for a hermitian scalar field, J. Math. Phys., Vol. 16, 1975, pp. 985-1007. | MR 438943 | Zbl 0316.46062

[4] G.L. Sewell, PCT and gravitationally induced thermal states, Ann. Phys. (N.Y.), Vol. 141, 1982, pp. 201-224. | MR 673980

[5] H. Narnhofer, I. Peter and W. Thirring, How hot is the de Sitter space?, Int. J. Mod. Phys. B, Vol. 10, 1996, pp. 1507-1520. | MR 1405180

[6] J. Bros and U. Moschella, Two point functions and de Sitter quantum fields, Rev. Math. Phys., Vol. 8, 1996, pp. 327-391. | MR 1388256 | Zbl 0858.53054

[7] J. Bros, H. Epstein and U. Moschella, Analyticity properties and thermal effects for general quantum field theory on de Sitter space-time, Commun. Math. Phys., Vol. 196, 1998, pp. 535-570. | MR 1645200 | Zbl 1060.81542

[8] R. Haag, Local Quantum Physics, Berlin: Springer 1996. | MR 1405610 | Zbl 0857.46057

[9] E.W. Mielke, Quantenfeldtheorie im de Sitter-Raum, Fortschr. Physik, Vol. 25, 1977, pp. 401-457. | MR 465061

[10] E. Nelson, Analytic vectors, Ann. Math., Vol. 70, 1959, pp. 572-615. | MR 107176 | Zbl 0091.10704

[11] M. Reed and B. Simon, Methods of modern mathematical physics I, New York: Academic Press, 1972. | MR 751959 | Zbl 0242.46001

[12] R. Haag, H. Narnhofer and U. Stein, On quantum field theory in gravitational background, Commun. Math. Phys., Vol. 94, 1984, pp. 219-238. | MR 761794

[13] S.J. Summers and R. Verch, Modular inclusion, the Hawking temperature and quantum field theory in curved space-time, Lett. Math. Phys., Vol. 37, 1996, pp. 145-158. | MR 1391196 | Zbl 0844.53056

[14] W. Driessler, S.J. Summers and E.H. Wichmann, On the connection between quantum fields and von Neumann algebras of local operators, Commun. Math. Phys., Vol. 105, 1986, pp. 49-84. | MR 847127 | Zbl 0595.46062

[15] R.V. Kadison and J.R. Ringrose, Fundamentals of the theory of operator algebras. Volume II, New York: Springer, 1979.

[16] T. Kato, Perturbation theory for linear operators, Berlin: Springer, 1984. | MR 407617

[17] A. Connes, Une classification des facteurs de type III, Ann. Sci. Ecole Norm. Sup., Vol. 6, 1973, pp. 133-252. | Numdam | MR 341115 | Zbl 0274.46050