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ABSTRACT. - We describe the space of microlocal solutions of

a 2 x 2 system of pseudo-differential operators (PDO) on the real
line near an avoided crossing (2-levels system). We prove Landau-
Zener type formulae in the adiabatic case with avoided crossings
and for the classical limit of coupled Schrodinger operators (Born-
Oppenheimer approximation). The formulae that we get are uniform
in the set of small parameters (Planck constant and coupling constant),
they admits an uniquely determined complete asymptotic expansion
and allow to access simply to phases which are needed in order to
derive quantization conditions. The present paper is an expanded version
of results already obtained by Joel Pollet in his Ph.D. Thesis ( 1997).
Quantization conditions will be described in (Colin de Verdiere, 1998),
following the techniques of (Colin de Verdiere and Parisse, 1998). See
also (Rouleux, 1997) concerning the scattering matrix. An extension to
time dependent Schrodinger equation close to the work by Hagedorn
( 1994) and Hagedorn-Joye ( 1998) and based on (Melrose and Uhlmann,
1979; Guillemin and Uhlmann, 1981 ) and (Taylor, 1981 ) is also in

preparation. (s) Elsevier, Paris
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RESUME. - On decrit les solutions microlocales d’un systeme 2 x 2
d’ operateurs pseudo-differentiels (OPD) sur 1’ axe reel pres d’un croi-
sement evite 2 On en deduit une formule du type
Landau-Zener pour la limite classique d’equations de Schrodinger cou-
plees. Les formules obtenues sont uniformes dans 1’ ensemble des para-
metres (constante de Planck et constante de couplage), donnent lieu a
un developpement asymptotique complet uniquement determine et per-
mettent d’ acceder de fagon simple aux phases pour calculer les condi-
tions de quantification. Une version moins precise des resultats a ete ob-
tenue par Joel Pollet dans sa these. Les conditions de quantification sont
traitees dans un article avec Bernard Parisse (en preparation). Une exten-
sion au cas de 1’equation de Schrodinger dependant du temps rejoignant
les travaux de Hagedorn et Hagedorn-Joye et basee sur les travaux de
Melrose-Uhlmann-Guillemin est en preparation.~) Elsevier, Paris

Mots Operateur pseudo-differentiel, semi-classique, microlocal, systeme a 2
niveaux, formule de Landau-Zener, limite adiabatique, symbole sous-principal, lemme
de Morse

1. INTRODUCTION

The origin of our work is a quantum mechanical problem: describe the
behavior when h -+ 0 of the solutions of

where t E R, E C~n or some Hilbert space, and A(t) is a linear

operator (Hamiltonian) in that space. When A(t) has no crossing of
eigenvalues, i.e., if the distance of one eigenvalue from the neighboring
ones remains greater than some fixed (independent of h ) constant 8 for
all t, then the main qualitative result is the adiabatic approximation : when
h ~ 0, if for some to belongs to the eigenspace of such an isolated
eigenvalue, it belongs to it for all t . Several levels of refinement can be
found both in the physics and in the mathematics litterature.
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More precisely we will study the breakdown of the adiabatic approx-
imation, i.e., what happens when two eigenvalues cross or nearly cross
(the established name in the physical litterature is avoided crossings) for
some to. Qualitatively if belongs to the eigenspace of only one of
those eigenvalues for t  to, it belongs to the direct sum of both for t &#x3E; to,
so one can define a probability of transition at the (avoided) crossing. The
Landau-Zener formula for such a probability was established in 1932 in
the physics litterature [18,29]. Better results were obtained the same year
by Stuckelberg [26]. In the mathematical literature the Landau-Zener for-
mula in the adiabatic regime is proved for analytic A(t) in [ 12] and [ 15].
More refined formulae are given in [ 16] . The Landau-Zener formula for
the semi-classical propagation of coherent states is proved by Hagedorn
and Hagedorn-Joye [ 13,14] .
We will present here generalizations of a Landau-Zener type formula,

valid for more general equations than those of quantum mechanics
(i.e., optics, acoustics etc, for which there are little or no hints in the
physics literature), and for less restrictive assumptions about operators
than analyticity.
To grasp the principle of our method, it is first necessary to understand

that this is a two small parameters problem, which must not be kept
independent.
- the adiabatic parameter, which we will always denote h . It has

nothing to do with the Planck’s constant, but it is a renormalized non-
dimentional quantity, essentially the (small) ratio of the speed of variation
as a function of t of the coefficients of A (t) and of the particular solution

we want to study. Depending on the equation at hand, it can be

5y~, ratio of the classical action and of the Planck’s constant, 
fourth square root of the ratio of the electron mass m and of a nuclear
mass M (Born-Oppenheimer approximation), the reciprocal of the main
quantum number or of the number of nodes of a wavefunction etc.
- the coupling parameter, which we will always denote c, essentially

the minimum distance of the two eigenvalues at the (avoided) crossing
position.

If one let h going to 0, with 8 fixed, one gets the adiabatic approxi-
mation, and corrections are exponentially small with respect to h . This
is a particularly tricky problem to handle, especially in the smooth, non-
analytic, framework. If one let ~ going to 0, with h fixed one gets the
opposite diabatic approximation and corrections as a perturbation theory
with respect to 8, less unwieldy because it is a regular perturbation theory.
But we need a theory which interpolates smoothly between the two ap-

Vbl.71,n° 1-1999.
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Fig. 1. (a) The original hamiltonian flow in phase space. (b) The model
hamiltonian flow after canonical mapping.

proximations, especially because it is frequently possible to go smoothly
between the two limiting cases by varying an experimental parameter.
This is what is given by the Landau-Zener formula: one gets a finite re-
sult when letting both hand £ tend to zero, while keeping the ratio e 2 / h
constant.

Our theoretical framework will be the theory of pseudo-differential
operators (PDO) with a small parameter h as presented in the book [23].
This is mainly because the limit h 2014~ 0 is the classical limit of quantum
mechanics, and that this theory gives a mathematically sound way to
tackle in quantum mechanics classical phase space properties: canonical
transformations, local in phase space properties (called microlocal

properties in this theory).
The basic idea will indeed be a classical phase space way of thinking,

the same as that was used in [6-8]. The classical limit in phase space
near an avoided crossing will be shown to be an Hamiltonian flow near
a saddle point (Fig. l(a)). The classical way is to map with a canonical
transformation  this flow to the Haminonian flow of h) = 0,
where y and ~ are new conjugate coordinates and 03A60 is some function
we will compute (Fig. l(b)).
The quantization of this new classical hamiltonian is:

Poincaré - Physique théorique
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The crucial point is then that this first order differential equation has
solutions which can be computed exactly in an elementary way [6].

All our work will be to give correct mathematical definitions and
proofs to this loose way of thinking.

Let us be more precise. We will study a generalized 2-levels system in
dimension 1 given by:

Eq. ( 1 ) is a particular case with

where the dependance of the additional coupling parameter has been
indicated. Here Pl, P2 and Ware order 0 h-PDO’s which depende in
a smooth way on £ and the P/s are self-adjoint. We are located near
a point zo in the phase space such that the principal symbols
p~ of PJ vanish at zo and their differentials at that point are linearly
independent. We also assume that the principal symbol of W (0) at zo does
not vanish. Then ~W(~) builds an avoided crossing of the eigenvalues of
the principal symbol.

This general case covers two important particular cases:

Example 1.1 (Adiabatic Schrodinger equation). - We consider the

Eq. ( 1 ) where we assume:

and

We have then:

We assume that ~,1 (to) == ~,~ (to), ~~ (to) 7~ ~,2 (to) and that W(to) 7~ 0. Then
we have:

Vol. 71, n° 1-1999.
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It is also possible to solve the case of N-levels systems:

Example 1.2 (N -levels systems). - The motivation for looking at the
very general situation of Eq. (3) is that the results apply also to any
coupled system of N Schrodinger operators on the real line, near some
avoided crossing of two of its eigenvalues. It is also possible to look at the
adiabatic case (Eq. ( 1 )) for an N-levels system near an avoided crossing
of two eigenvalues.

Example 1.3 (Semi-classical limit of a system of coupled Schro-
dinger operators). - It is a simple example of the Born-Oppenheimer
approximation which is used as an approximation for quantum molecular
dynamics.
The P;’s are Schrodinger operators in one variable

and W is a non-zero complex number. We assume here that 
 E ~ and we have zo = (xo , ±V2(E-Vi(~o))).

Let us start again with Eq. (3). We look at a point zo which is a
transversal intersection of the characteristic sets Z j = == 0}, j = 1, 2.
The Zy’s are oriented by the Hamiltonian vector fields of the We

assume moreover that W(0) is elliptic at the point zo. We denote by u~o
the (non-zero) value of the principal symbol of W(0) at zo .
We associate to that situation a transfer matrix

Annales de l’Institut Henri Poincare - Physique ’ theorique ’
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which relates microlocal incoming solutions (that is roughly speaking
WKB solutions on the 2 incoming edges) to outgoing solutions by the
condition that they admit a prolongation as a microlocal solution near 
Such a matrix is unitary for currents 7~. We compute explicitly the
asymptotic expansions of the entries of T in an orthonormal basis of
microlocal solutions on each edge. We get then a Landau-Zener type
formula which we write

In fact, we show more precisely that the argument in the exponential
can be written h ~ (E, h) where ø is a classical symbol with respect to h
of the following type

where the are smooth and satisfy = O(~2) .
For comparison with [ 19] (see in particular Theorem 5.1 ) and with the

existing literature, we mention the following facts:
-The results are valid without any analyticity property.
-The results are local and even microlocal.
-We get a full asymptotic expansion with respect to both small

parameters E and h .
-The results describe in an uniform way the transition between the

coupled regime and the non-coupled regime.
The transition arises when ~ is of the same order as h. If £ h

(domain II) the adiabatic approximation works (~1,2! and we

are then reduced to 2 scalar equations. If £ ~ ~/~ (domain I) the opposite,
diabatic, approximation works: the two equations are uncoupled at the
principal order.
Our way is to reformulate the semi-classical Morse lemma given

in [6] in order that it holds for any deformation Qê of a scalar PDO
Qo near a saddle point. The usual Morse lemma gives us some local
coordinates which reduce a real valued function near a non-degenerate
critical point to its Taylor expansion at order 2. Some version with a given
volume element (isochoric Morse lemma) has been derived in [9]. In the
2-dimensional case, it gives a symplectic version of the Morse lemma
which asserts that there exists, near a saddle point, some Darboux’s

Vol. 71, nO 1-1999.
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coordinates with respect to which the function can be written as 
It is then rather easy to derive a semi-classical form of the Morse lemma

by using Fourier integral operators in order to quantize this canonical
transformation (see [6]).

Starting with the 2 x 2 system given by Eq. (3), ellipticity of W at the
point zo allows to reduce to that kind of deformation for u, the following
new Eq. (9) is called the (non-commutative) determinant of the system:

We are then able to show that the equation = 0 is microlocally
equivalent to

near (0,0). This equation admits a 2-dimensional vector space of

solutions which were carefully described in [6].
We get then an invariant associated to the system which is a formal

with respect to both parameters h and ~ . To go back
to the original space we need to consider a problem: the canonical

transformation ~~ which maps the two spaces is not unique. It maps level
sets of q~ in the original space to level sets of y~ 2014 $0 in the model space.
But since the hamiltonian flow is a canonical mapping, composition of Xê
by hamiltonian flow for any time t is an equally valid mapping. Even
more, one can show that any smooth line of time origins to in the original
space can be mapped to any smooth line in the model space. We thus
need a proof that the final result in the original space is independent of

de l’Institut Henri Poincaré - Physique theorique
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this arbitrariness in the mapping. The proof comes from the fact that the
resulting general Landau-Zener formula can be geometrically expressed
as a cross-ratio: the space of microlocal solutions of the Eq. (3) has
dimension 2 and the four subspaces of solutions microlocally vanishing
on the four edges are four 1-dimensional subspaces of it. Their cross-ratio
is our geometric invariant. In the unitary case, this cross-ratio determines
the reflexion and transmission coefficients.
The scheme of the paper is the following: after some review of useful

facts on cross-ratio’s, we study a scalar equation which is a deformation
of a case where the principal symbol has a saddle point (Section 3); we
give then a general statement for a coupled system of 2 PDO (Section 4).
In order to apply it to an N-levels adiabatic system, we need to use
a reduction procedure which works into two steps: reduction from N
to 2 levels (Section 6.1 ) and reduction from 2 levels to 2 levels with

t-independent non-diagonal entry (Section 6.2). We show how these
results give Landau-Zener type formulae (Section 6.3) for the adiabatic
case and for the case of 2 coupled Schrodinger operators (Section 5). At
the end, we give some perspectives for the global case and for the case of
arbitrary dimension.

2. CROSS-RATIO

Let K be a field, let E be a 2-dimensional vector space on K and
P = peE) the proj ective space of E, that means the set of 1-dimensional
subspaces of E. Let = 1,..., 4, be four elements of P, 3 of which
are not equal. Let d be an affine line in E with 0 ~ d and t an affine

parameter on d . We have the:

DEFINITION 1. - The cross-ratio [Ð1, D2, D3, D4] E I~ U oo is de-

fined in thefollowing way. If tj E K U oo are the parameters of Dj D d,
we put:

The cross-ratio is independent of the choices of d and t .
In this paper, K will be the field of Laurent formal series with complex

coefficients, E will be the space of microlocal solutions of our operator
near the critical point zo, and, if we number the 4 branches of the

characteristic set Zj for j = 1, 2, 3, 4, the D/s are the spaces of solutions
which vanish microlocally on the Z/s. The fact that the D/s are 1-di-

VbL71,n° 1-1999.
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mensional spaces and that no 3 of the D ’s coincide depends on the result
on normal forms (semi-classical Morse lemma, see Theorem 1 ).

Let us assume that E C where the E/s are 1-dimensional
vector spaces on K, is the graph of a linear mapping T : El 1 (B ~2 ~
~3(6~4. We choose basis for the E j’S and we assume that the matrix of
T is (T) == If Dj = E ~ Hj where Hj C E is the hyperplane whose
projection on E J is 0, then:

PROPOSITION 1. - If K = C or if the are Hilbert spaces
and if T is unitary, we have [T] = 1 - .2014, where t is one of the diagonal
elements where the matrix is computed in an orthonormal basis.

3. DEFORMATIONS OF SADDLE POINTS

3.1. The context

Let = 1, 2, be two smooth functions from into We
assume that we are looking near a point (saddle point) such
that

Pi == = 0 and the differentials d p (zo),

dp2(z0) are independent. ( 10)
Let Q~, where c is a real parameter which stays close to 0, an h - PDO
of order 0 which depends in a smooth way on e. Let us denote by q~
the principal symbol of QF and assume that qo = We assume that

with c~o 5~ 0 and 1 ~ 1: cvocl is then an equivalent at c = 0
of the critical value of q£ .

3.2. Normal forms

The following theorem is a variant of the isochoric Morse lemma
(see [9] ) and its semi-classical version [6]. The benefit of this variant
is that it does not use the functional calculus, neither the self-adjointness
of the Hamiltonians (we will only use the fact that the principal symbol
is real valued).

THEOREM 1. - (a) There exists a smooth family of germs of canonical
transformations 0) -+ and of functions such

that q~ o Xê = 03A60(~)).

l’Institut Henri Poincaré - Physique theorique
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The smooth function Øo is not unique, but its Taylor expansion

is. We have:

where sign is discussed in the Section 3.3.
(b) There exists a FIO (Fourier integral operator) U£ associated to Xê

and a PDO E~ elliptic at the point O such that we have microlocally
near 0:

where cP is a symbol in h of the form

The CPk’S are smooth and admit uniquely determined Taylor expansions

(c) If 6e = + with 03A9~ = CPk(S) = and
then

3.3. Sign of co /

Let us put eo = eo (o) . We will use the following relations:

and

We are left with the problem of finding the sign of eo which is d=

according to the sign of Ho on the image by Xo of the quadrant { y &#x3E;

0, ~ &#x3E; 0}; see Fig. 4.

Vol. 71, nO 1-1999.
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Fig. 4. Numbering of branches and positivity domains of the Hamiltonians.

3.4. Proof of Theorem 1: part (a) 

The isochoric Morse lemma [9] gives the existence of canonical

mappings ~~ such that

where f~ is smooth and smoothly dependent of E, /o(0) = 0, f’~(0) ~ 0.
Implicit function theorem asserts that f~ admit a zero CPo (E) such that

= 0. We write then

The principle of the computation of Øo (8) is to compare the areas
limited by the original curve q~ = 0, and the mapped curve y~ = 
which must be equal since Xê is canonical. This would cause no problem
for a node mapped to y2 -~ r~2 = ~o (~), since these areas are finite, but
needs a trick for our saddle case since they are both infinite.
We assume now that &#x3E; 0. The way out is to use the existence of

a singular asymptotic expansion (i.e., which contains some log terms) of

where ~p is smooth and equal to 1 near zo, we have:

Annales de l’Institut Henri Poincare - Physique " theorique "
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where ~ is smooth. We have then

which gives the ak’s (which are independent of From it we deduce the

Taylor coefficients of Po by the identification

Notice that only the Taylor coefficients are determined that way, so that
is determined only up to a flat function of ~, but it was shown in [9]

that X is unique only up to a flat function.

3.5. Proof of Theorem 1: part (b), existence

Explicit dependencies on ~ will be omitted in this subsection. Let U
be a FIO associated to x , Egorov’s theorem gives:

where E (respectively, R 1 ) is a PDO of order 0 (respectively, 1 ), with
principal symbol e (respectively, rl ). Also

We then look for P, a PDO of order 0 with principal symbol eis, such
that:

where El (respectively, R2) are PDO of order 1 (respectively, 2) and
principal symbol el (respectively, r2). Writing principal symbols of order
1 gives:

where unknowns are s, ø1 and el. It is known (see [12] or [6]) that such
an equation can be solved iff there are no resonant terms, i.e., no powers
of yr~ in its right hand side Taylor series. This gives an infinite set of
equations for the e1 Taylor coefficients, and for 03A61; if e1~03A3~j=0 xj (y~)j,
Vbl.71,n° 1-1999.
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we must solve the system:

where x_ = -~i. The r/s are the coefficients of in the rl Taylor
series. We solve this system using Lemma 1 below. For that purpose set
~o (e) _ ,8, and look for x~ as Coo functions of ~8. The process is then
iterated, conjugating with PDO’s Id + 5/, where l = 1, ....

3.6. A lemma

LEMMA 1. - Let us consider the following system 
tions (*~ ), j &#x3E; 0:

where the ( j ~ 0) are known as well as ,B, and the ( j ~ -1 ) are
unknowns. This system of equations has a solution xj = fj (03B2) where the

are smoothfunctions.

Proof. -Let be a smooth function whose Taylor series is f_~ rv
where the are considered as formal series. We put

and so on: xk r-v is smooth. D

3.7. Proof of Theorem 1: part (c)

If Qo = solutions of PZU == 0 give microlocal solutions of
Qou = 0 localized on the curve /?2 = 0 and whose principal symbol does
not vanish. It is compatible with the model

(where p2 = 0 corresponds to ~ = 0) only if CP(O, h) vanishes identically.
Let U£ be a FIO associated to x£ such that

Annales de hlenri Poincaré - Physique theorique


