Infrared analysis of the tridimensional Gross-Neveu model : pointwise bounds for the effective potential
Annales de l'I.H.P. Physique théorique, Tome 71 (1999) no. 2, pp. 129-198.
@article{AIHPA_1999__71_2_129_0,
     author = {Procacci, Aldo and Pereira, Emmanuel},
     title = {Infrared analysis of the tridimensional {Gross-Neveu} model : pointwise bounds for the effective potential},
     journal = {Annales de l'I.H.P. Physique th\'eorique},
     pages = {129--198},
     publisher = {Gauthier-Villars},
     volume = {71},
     number = {2},
     year = {1999},
     mrnumber = {1705135},
     zbl = {0964.81051},
     language = {en},
     url = {http://archive.numdam.org/item/AIHPA_1999__71_2_129_0/}
}
TY  - JOUR
AU  - Procacci, Aldo
AU  - Pereira, Emmanuel
TI  - Infrared analysis of the tridimensional Gross-Neveu model : pointwise bounds for the effective potential
JO  - Annales de l'I.H.P. Physique théorique
PY  - 1999
SP  - 129
EP  - 198
VL  - 71
IS  - 2
PB  - Gauthier-Villars
UR  - http://archive.numdam.org/item/AIHPA_1999__71_2_129_0/
LA  - en
ID  - AIHPA_1999__71_2_129_0
ER  - 
%0 Journal Article
%A Procacci, Aldo
%A Pereira, Emmanuel
%T Infrared analysis of the tridimensional Gross-Neveu model : pointwise bounds for the effective potential
%J Annales de l'I.H.P. Physique théorique
%D 1999
%P 129-198
%V 71
%N 2
%I Gauthier-Villars
%U http://archive.numdam.org/item/AIHPA_1999__71_2_129_0/
%G en
%F AIHPA_1999__71_2_129_0
Procacci, Aldo; Pereira, Emmanuel. Infrared analysis of the tridimensional Gross-Neveu model : pointwise bounds for the effective potential. Annales de l'I.H.P. Physique théorique, Tome 71 (1999) no. 2, pp. 129-198. http://archive.numdam.org/item/AIHPA_1999__71_2_129_0/

[1] Abdesselam and V. Rivasseau, Explicit fermionic tree expansions, Lett. Math. Phys. 44 (1) (1998) 77-88. | MR | Zbl

[2] G.A. Battle and P. Federbush, A phase cell cluster expansion for euclidean field theory, Ann. Phys. 142 (1982) 95-139. | MR

[3] G. Benfatto and G. Gallavotti, Perturbation theory of the Fermi surface in a quantum liquid, J. Stat. Phys. 59 (3-4) (1990) 541-664. | MR | Zbl

[4] G. Benfatto and G. Gallavotti, Renormalization Group, Princeton University Press, Princeton, NJ, 1995. | MR | Zbl

[5] G. Benfatto, G. Gallavotti and V. Mastropietro, Renormalization group and the Fermi surface in the Luttinger model, Phys. Rev. B 45 (1992) 5468.

[6] G. Benfatto, G. Gallavotti, A. Procacci and B. Scoppola, Beta function and Schwinger functions for a many fermions system in one dimension, Anomaly of the Fermi surface, Commun. Math. Phys. 160 (1994) 91-171. | MR | Zbl

[7] D. Brydges, A Short Course on Cluster Expansion, Les Houches 1984, K. Osterwalder and R. Stora (Eds.), North-Holland, 1986. | MR

[8] D. Brydges and H.-T. Yau, Grad φ perturbations of massless Gaussian fields, Commun. Math. Phys. 129 (1990) 351-392. | MR | Zbl

[9] M. Disertori and V. Rivasseau, Continuos constructive fermionic renormalization, Preprint (1998). | MR

[10] P.A. Faria Da Veiga, Construction de modéles non renormalisables en théorie quantique des champs, Thesis, Ecole Polytechnique, 1991.

[11] J. Feldman, J. Magnen, V. Rivasseau and R. Seneor, A renormalizable field theory: the massive Gross-Neveu model in two dimensions, Commun. Math. Phys. 103 (1986) 67-103. | MR | Zbl

[12] G. Gallavotti, Renormalization Group, Troisième cycle de la Physique, Lausanne, 1990.

[13] G. Gallavotti, Renormalization theory and ultraviolet stability for scalar fields via renormalization group methods, Rev. Mod. Phys. 57 (1985) 471-562. | MR

[14] K. Gawedzki and A. Kupiainen, Block spin renormalization group for dipole gas and (∇φ)4, Ann. Phys. 147 (1983) 198-243. | MR

[15] K. Gawedzki and A. Kupiainen, Gross-Neveu model through convergent perturbation expansions, Commun. Math. Phys. 102 (1985) 1-30. | MR

[16] C. Kopper, J. Magnen and V. Rivasseau, Mass generation in a large N Gross-Neveu model, Commun. Math. Phys. 169 (1995) 121-180. | MR | Zbl

[17] D. Iagolnitzer and J. Magnen, Asymptotic completeness and multiparticle structure in field theories. II Theories with renormalization: the Gross-Neveu model, Commun. Math. Phys. 111 (1987) 81-100. | MR

[18] A. Lesniewski, Effective action for the Yukawa 2 quantum field Theory, Commun. Math. Phys. 108 (1987) 437-467. | MR

[19] M. O'Carroll and E. Pereira, A representation for the generating and correlation functions in the block field renormalization group formalism and asymptotic freedom, Ann. Phys. 218 (1992) 139-159. | MR | Zbl

[20] E. Pereira, Orthogonality between scales in a renormalization group for fermions, J. Stat. Phys. 78 (3-4) (1995) 1067-1082. | Zbl

[21] E. Pereira and M. O'Carroll, Orthogonality between scales and wavelets in a representation for correlation functions. The lattice dipole gas and (∇φ)4 models, J. Stat. Phys. 73 (3-4) (1993) 695-721. | MR | Zbl

[22] E. Pereira and M. Procacci, Block renormalization group in a formalism with lattice wavelets: correlation function formulas for interacting fermions, Ann. Phys. 255 (1) (1997) 19-33. | MR | Zbl

[23] E. Pereira, A. Procacci and M. O'Carroll, Multiscale formalism for correlation functions of fermions. Infrared analysis of the tridimensional Gross-Neveu model, J. Stat. Phys. 95 (3/4) (1999) 669-696. | MR | Zbl

[24] D. Ruelle, Statistical Mechanics, Rigorous Results, W.A. Benjamin, New York, 1969. | MR | Zbl