@article{AIHPA_1999__71_4_395_0, author = {Grognet, St\'ephane}, title = {Entropies des flots magn\'etiques}, journal = {Annales de l'I.H.P. Physique th\'eorique}, pages = {395--424}, publisher = {Gauthier-Villars}, volume = {71}, number = {4}, year = {1999}, mrnumber = {1721559}, zbl = {1131.37300}, language = {fr}, url = {http://archive.numdam.org/item/AIHPA_1999__71_4_395_0/} }
Grognet, Stéphane. Entropies des flots magnétiques. Annales de l'I.H.P. Physique théorique, Volume 71 (1999) no. 4, pp. 395-424. http://archive.numdam.org/item/AIHPA_1999__71_4_395_0/
[1] Some remarks on flows of line elements and frames, Sov. Math. Dokl. 2 (1961) 562-564, traduit de Dokl. Akad. Nauk SSSR 138 (1961) 255-257. | MR | Zbl
,[2] An estimate for the measure theoretic entropy of geodesic flows, Ergod. Th. and Dynam. Sys. 9 (1989) 271-279. | MR | Zbl
and ,[3] Le volume et l'entropie minimale des espaces localement symétriques, Invent. Math. 103 (1991) 417-445. | MR | Zbl
, et ,[4] Les variétés hyperboliques sont des minima locaux de l'entropie topologique, Invent. Math. 117 (1994) 403-445. | MR | Zbl
, et ,[5] Volumes, entropies et rigidités des espaces localement symétriques de courbure strictement négative, C. R. Acad. Sci. Paris 319 (1994) 81-84. | MR | Zbl
, et ,[6] Entropies et rigidités des espaces localement symétriques de courbure strictement négative, G. A. F. A. 5 (1995) 731- 799. | MR | Zbl
, et ,[7] Survey article: minimal entropy and Mostow's rigidity theorems, Ergod. Th. and Dynam. Sys. 16 (1996) 623-649. | MR | Zbl
, and ,[8] Periodic orbits for periodic flows, Amer. J. Math. 94 (1972) 1-30. | MR | Zbl
,[9] The dynamics and geometry of contact Anosov flows, Ph.D. Thesis, Michigan Ann Arbor University, 1998. http://www.math.lsa.umich.edu/∼boland/ research.html.
,[10] On the dynamics of uniform Finsler manifolds of negative flag curvature, Ann. Global Anal. Geom. 15 (1997) 101-116. | MR | Zbl
,[11] Géométrie des équations différentielles du second ordre, Ann. Inst. H. Poincaré, Phys. Théor. 45 (1986) 1-28. | Numdam | MR | Zbl
,[12] Locally symmetric Finsler spaces in negative curvature, C. R. Acad. Sci., Paris I 324 (1997) 1127-1132. | MR | Zbl
,[13] On the entropy of the geodesic flow in manifolds without conjugate points, Invent. Math. 69 (1982) 359-392. | MR | Zbl
and ,[14] Riemannian Geometry 2nd. Ed., Universitext, Springer, Berlin, 1987. | MR | Zbl
, and ,[15] Éléments de Topologie Algébrique, Hermann, Paris, 1971, pp. 211-214. | MR | Zbl
,[16] Flots magnétiques en courbure négative. À paraître dans Ergod. Th. and Dynam. Sys. | Zbl
,[17] Introduction to the Modern Theory of Dynamical Systems, Cambridge Univ. Press, Cambridge, 1995. | MR | Zbl
and ,[18] Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Publ. Math. l'IHES 72 (1980) 137-173. | Numdam | MR | Zbl
,[19] Entropy and closed geodesics, Ergod. Th. and Dynam. Sys. 2 (1982) 339-365. | MR | Zbl
,[20] Four applications to conformal equivalence to geometry and dynamics, Ergod. Th. and Dynam. Sys. 8* (1988) 139-152. | MR | Zbl
,[21] Intégration et Probabilités-analyse de Fourier et Analyse Spectrale, Masson, Paris, 1982, pp. 129-132. | MR | Zbl
,[22] Topological entropy for geodesic flows, Ann. Math. 110 (1979) 567- 573. | MR | Zbl
,[23] A new curvature invariant and entropy of geodesic flows, Invent. Math. 77 (1984) 455-462. | MR | Zbl
and ,[24] The structure of Legendre foliations, Trans. Amer. Math. Soc. 320 (1990) 417-455. | MR | Zbl
,[25] Synchronization of canonical measures for hyperbolic attractors, Comm. Math. Phys. 106 (1986) 267-275. | MR | Zbl
,[26] Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astérisque 187-188 (1990) 1-268. | Numdam | MR | Zbl
and ,[27] G. and Anosov geodesic flows and twisted symplectic structures, in: Ledrappier et al. (Eds.), Proc. 1st International Conference on Dynamical Systems, Montevideo, Uruguay, 1995-a tribute to R. Mañe, Harlow, Longman, Pitman, Res. Notes Math. Ser. 362 (1996) 132-145. | MR | Zbl
,[28] On the regularity of the Anosov splitting for twisted geodesic flows, Math. Res. Lett. 4 (1997) 871-888. | MR | Zbl
,[29] G. and First derivative of topological entropy for Anosov geodesic flows in the presence of magnetic fields, Nonlinearity 10 (1997) 121-131. | MR | Zbl
,[30] Characteristic Lyapunov exponents and smooth ergodic theory, Russ. Math. Surveys 32 (1977) 55-114; from Uspekhi Mat. Nauk 32 (1977) 55-112. | Zbl
,[31] Foundations of Differential Manifolds and Lie Groups, Springer, Berlin, 1983, Chapitre 6. | MR | Zbl
,