
ANNALES DE L’I. H. P., SECTION B

V. MANDREKAR

H. SALEHI
Subordination of infinite-dimensional stationary
stochastic processes
Annales de l’I. H. P., section B, tome 6, no 2 (1970), p. 115-130
<http://www.numdam.org/item?id=AIHPB_1970__6_2_115_0>

© Gauthier-Villars, 1970, tous droits réservés.

L’accès aux archives de la revue « Annales de l’I. H. P., section B »
(http://www.elsevier.com/locate/anihpb) implique l’accord avec les condi-
tions générales d’utilisation (http://www.numdam.org/conditions). Toute uti-
lisation commerciale ou impression systématique est constitutive d’une
infraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AIHPB_1970__6_2_115_0
http://www.elsevier.com/locate/anihpb
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


115-

Subordination of infinite-dimensional

stationary stochastic processes (*)

V. MANDREKAR and H. SALEHI

Department of Statistics and Probability

Ann. Inst. Henri Poincaré,

Vol. VI, n° 2, 1970, p. 130.

Section B :

des Probabilités et Statistique.

RESUME. - The notion of subordination for infinite-dimensional statio-
, 

nary processes is introduced and its. analytic characterization in terms of
its spectral and cross-spectral distributions is studied. These results cons-

titute a natural extension to the infinite-dimensional case of Kolmogorov’s
work on subordination for the univariate processes.

INTRODUCTION AND PRELIMINARY RESULTS

1. The study of subordination of weakly stationary stochastic processes
was initiated by A. N. Kolmogorov in his fundamental paper [6]. Based

on the isomorphism between the time and spectral domain of the uni-
variate stationary processes ([6], 2.7), he was able to obtain analytic cha-
racterizations of the notion of subordination, which enabled him to esta-
blish various interesting results concerning the prediction of the stationary
stochastic processes.

The importance of the concept of subordination for the multivariate
case was emphasized and initiated by P. ;Masani [9] basing his results on

(*) This research was supported by the National Science Foundation grant GP-11626.
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the work of M. Rosenberg [16] and, was furthered in [15], [17] (1). In our

recent work [7] we obtained an analogue of Kolmogorov isomorphism
theorem for operator-valued measures. In this paper we utilize this theo-
rem to investigate subordination of the infinite-dimensional stationary
processes studied by Payen [14] (see also [2] and [5]).
The notion of subordination in finite-dimensional case has lent a new

insight into the problems of analysis ([10], [1 7]). It is hoped that a similar
insight may lead to the solution of hitherto untractable problems in the
infinite-dimensional case (§ 5).

In section 3 we present an extended version of Kolmogorov’s results on
subordination after the preliminary results in section 2. In section 4

the results are applied to the weakly stationary processes studied by
Payen [14].

2. For any two separable (complex) Hilbert-spaces 9f, Jf with inner
products (., ).1{’, (., . )~ and norms I I I we denote by

a) the class of all linear operators from Yf into Jf;
b) L(Yt, class of all operators in Jf) with domain ~f;
c) .ff), the class of all bounded operators in L(Yt, f) ;
d) .ff), the class of all compact operators in B(Yt, ,3Y’);
e) the class of all Hilbert-Schmidt operators [7], in f);
f ) Jf), the class of all non-negative definite operators in 1%°)

of finite-trace.

2.1. DEFINITION. - Let ~ be a a-algebra of subsets of a space Q.
A K)-valued set function M is said to be

(i) countably additive (c. a.) if for each x e Jf, Ai’s disjoint in ~,

i= 1

where the series converges in Jf;

(ii) p-bounded if there exists a non-negative finite c. a. measure 11 on

58 such that h M(A)x ~.~ ~ Y 

It can be easily checked that if M is p-bounded then M is countably
additive in the uniform norm on .~f) ([7], § 2).

(~) We thank Professor M. Rosenberg for making available a copy of the galley proof
of his paper [77].
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2.2. DEFINITION. - Let .~, be separable Hilbert-spaces, C be
a measurable O(.ff, ~-valued function ([7], 2.1) and M be a ,u-bounded
B(H, K)-valued measure. Then C is said to be integrable M if ( 1 )
is bounded and is Bochner integrable. We write

Refnark.. - (i) The integral is independent of the bounding
measure ([7], 4.5).

(ii) lf M is non-negative definite H)-valued and H = (!) = K,

then exists if (1>, 1) is M-integrable ([7], 4 . 8) and in this case

The following is our definition of the concept of absolute continuity.

2.3. DEFINITION. - Let M and N be ~-valued c. a.

measures respectively. We say that N is absolutely continuous (a. c.)
with respect to (w. r. t.) M and write N ~ M if there exists a finite-valued
non-negative measure 11 such that M and N are p-bounded and the null
space 91M, of M’ is included in 91N,.

2.4. RADON-NIKODYM THEOREM. - Let M be a .ff)-valued c. a.
measure and let N be a ~-valued c. a. measure. Then N C M if
there exists an 0(Jf, ~-valued function C integrable M such that

Proof. - Let N ~ M. Define 03A6 = N’M’ - (2). 03A6 is a measurable

O(~, ~)-valued function (3). N ~ M implies R(N’*) c R(M’*), where
R( ) denotes the closure of the range. Hence, N’* = giving
N’ = Put PM’ == N’M’-M’ == Therefore N~ == 

(~) M~ denotes the Radon-Nykodym derivative of M with respect to Ji (see [7], 3.9).
(~) A - denotes the generalized inverse of an operator A ([7], 2.11).
(3) A- - (A*A)-A*. A measurable ==> A* measurable ==> A*A measurable => (A*A)-

measurable ==> A- is measurable.
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i. e. N(B) = B 03A6dM for all B E B. Let N(B) = f. Thie implies

that N’ = and therefore RM ~ RN’, i. e. N ~ M.

2.6. Remark. - We observe that if 1>, ~’ are such that

for all B E ~, then we only deduce that 1>M’ = a. e. [~], that is 
(mod M) in the terminology of ([15], p. 360). We shall mean by dN/d M
any function 03A6 satisfying (2.5) and call it the Radon-Nikodym derivative
of N w. r. t. M.

In most of our work we shall be dealing with measures N, absolutely
continuous with respect to a non-negative ~)-valued measure F
such that a version of dN/dF is in L2,F ([7], 4 .10), i. e., N is Hellinger square-
integrable w. r. t. F in the sense of [18].

This necessitates the introduction of the notion of the Hellinger square-
integrability for operator-valued measures. The Hellinger integrability
for matrix-valued measures arose in connection with the multivariate

stochastic processes in the work of H. Salehi [19]. His work will be basic

in our extension of the notion to the operator-valued measures. Since

definition 1 of [18] does not seem to extend to the infinite-dimensional
case directly we use the characterization given in 2(b) of [18] as our defini-
tion.

2. 7. DEFINITION. 2014 a) Let Jf be a separable Hilbert space and F be
a /)-valued c. a. measure on the 03C3-algebra B of subsets of a space Q.
We say that a .~)-valued c. a. measure N is Hellinger square integra-
ble F if N ~ F and a version of dN/dF is in (1).

b) The class of all c. a. measures N, Hellinger square
integrable F is denoted by HZ,F.
On H2,F we define the Gramian .

It can be easily shown that H2,F is a Hilbert space over the ring B(.:t", .ff)
with the inner product

(2.9) ((M, N))F = trace (M, N)F.

(~) denotes the space L2,F of functions with values in This

notation will be handy when several are involved.
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In fact, H2,F is isomorphically isometric to L2,F under the map T given by

(2.10) TO = N, I> E 

Let M E H2,F’ For any C E ~, MC denotes the ~)-valued c. a.

measure given by
. M~(B) = M(C n B), B E 9).

Clearly MC E H2,F. For M, N E H2,F ~we also have

Using the orthogonality (in the sense of Gramian) in H2,F we give the fol-
lowing definition of F singularity for elements of H2,F.

2.12. DEFINITION. - Let M, N be Jf)-valued c. a. measures.

Then we say that M and N are F-singular if M, N E H2,F and (MB, NB)F = 0
for all B E ~ and we write M 1-F N.

2.13. Remark. In view of lemma 6. 7 of [15], the notion of singularity
in finite-dimensional case is independent of the measure F. Hence we

can choose F such that M, N lie in the space H2,F. Thus the above defi-

nition reduces to the definition of singularity given in [15].

SPECTRAL SUBORDINATION

3. Let Jt, be separable Hilbert spaces. Let E be a spectral measure
on a ~-algebra 93 of subsets of a space Q for the Hilbert space ~. We

denote by and U) the Hilbert spaces of all Hilbert-

Schmidt operators on Jt into 6? and .~’ into (!J respectively. For an

X E a) we define by

a) the closed subspace of U generated by the images of the opera-
tors { E(B)X, B e 93 };

b) ~x(~ ~). the closed subspace of U) generated by the family
{ E(B)XA; BeS and A E B(Jt, over the ring ~);

c) ~). the closed subspace of C~) generated by the family
{E(B)XA; B E ~ and over the ring ~).
The spaces aL~’) and ~) are similarly defined.
Following M. Rosenberg ([77], § 1) we define the notion of spectral

subordination.
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3.1. DEFINITION. - Let ~9) and ~). We say
E

that Y is spectral subordinate to X(Y « X) if J( x.
The following theorem gives various characterizations of the spectral

subordination.

3 . 2. THEOREM. - The following conditions are equivalent :

(i) Y ~ X; (ii) ~y(~ ’~) ~ ~); (iii) ~).
The proof of the theorem depends on the following lemma.

3.3. LEMMA. - Let X be in (9).- Denote by ax the closed

subspace of O generated by the image of X and by Ex the closure of the

set { XA, A E ~) ~ in ~). Then HS(~, 7x) = Lx.

Proof - Obviously Ex c HS(Yf, 6x}. Let Z E ax) 

be a complete orthonormal system (CONS) in Then I II Zei ~2
i= 1

is finite. Hence for any G > 0, there exists an integer N, such that

Let ZN = ZPN where PN is the projection onto the subspace of 1%° gene-
rated by ei ... eN. Clearly ZN E Tx). By ([14], p. 335) there exists
A E Jf) such that

Let B = APN then from (3.5) we get

Thus by (3.4) and (3.6) we get

(3.7) I XB - Z I~  E (1).
Hence Lx.

i> j I JE denote the Hilbert-Schmidt norm.
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Proof of theorem 3 2. Let us denote by I, the cartesian product of ~
and Jf) and for each oc E l, Za = E(B)XA. Then it can be easily
checked that

(3 . 8) £’) = the subspace of HS(.Yí, (9) generated by 
0:

Clearly, A x is equal to the subspace of (9 generated Since
a

HS(., is the tensor.-product of f with ~~x ([13], p. 130 and [7],
p. 22-23), it follows from ([12], p. 132) that

(3.9) HS(.Yí, Ax) = closed subspace generated by t jHS(Jf, O"zJ
a

From (3.8), (3.9) and lemma 3.3 we get ~) = HS(~, ~/~lx).
By a similar argument we have Jf) = HS(,’, Jlty). Hence (i) and
(ii) are equivalent. It can also be shown that ~x(~ ~) = HS(~, 
and W) = hence (i) is equivalent to (iii).

Let X E 6?), Y E (D) and E be a spectral measure on B
for 6?. We denote by Mxx, Mxy, Myx, Myy the c. a. measures X*E(. )X,
X*E(. )Y, Y*E(. )X, Y*E( . )Y on 93.

For X E (D) it can be easily observed that the ~)-valued
function 03BE on B given by ç(B) = E(B)X, B ~B, is an HS(H, O)-valued
countably additive orthogonally scattered (c. a. o. s.) measure in the sense
of § 6 of our previous work [7], with the associated c. a. measure Mxx
on ~ given by Mxx(B) = X*E(B)X. Clearly Mxx is a T(Yt, ~)-valued

measure. For T(~, /)-valued measures the integral was

defined by us for measurable O(~, functions D, ~P, and it was
shown that the space

is a complete Hilbert space over B(,3Y’, ,3Y’) under the norm

and simple functions are dense in it ([7], 4.19, 4.22). Using this result

we defined the stochastic integral ([7], 6.8). Let = 
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where the integral on the right is the stochastic integral
in the sense of ([7], 6.8). Now we observe that the closed subspace !/ ç
of (9) generated by the set { B e B, A e B(~P, ~)} over

y’) ([7], § 6) is precisely ~x(~ ~)- Hence by ([7], 6. 9) we get that

In addition the map O - 03A6dEX is an isometry in the sense that the
Gramian (f CEX, f 03A8EX) given by satisfies

and hence, in particular,

From the relation J’f) = and Payen’s definition of
the orthogonal projection onto the subspace aYx) of an element Y
in HS(3i, 6)), we get that the orthogonal projection of Y into Yf)
is the element given by ifa = projection of Ya onto 

3.14. THEOREM. - Let Y E HS(%, C~) and Y be the

orthogonal projection of Y onto ~)- Then

Proof - (I) follows from (3.11). For (ii) observe that

(E(B)Xh, = (E(B)Xh, 



123SUBORDINATION OF INFINITE-DIMENSIONAL STATIONARY STOCHASTIC PROCESSES

for all h E ~, k E Hence (Y - Y)*E(B)X = 0 giving MYX(B) = MYx(B).
*

Also, = Y*E(B)X = (E(B)Y)*X = ~ ~ X by (i). Clearly,
*

)* X - 03A8dMXX for 03A8 a simple function in Since

simple functions are dense in ([7], 4.22), vve have

(iii) follows from (i), (ii) and (3.12).
From theorem 3.14 (i) and (ii) we get that

where T is an in (2 .10).
The following is an extended version of Kolmogorov’s theorems ([6],

theorems 8, 9).

3.16. THEOREM (spectral subordination). - Let X E (9) and
Y E HS(ff, ~). Then the following conditions are equivalent.

(i) Y ~ X.

(ii) There exists a C E such that Y = 

(iii) Myx E H2,Mxx’ Myx = T~, and Myy(B) = for all

Proof - (i) ~ (ii) ~ (iii) follow from theorem 3 .14. For (iii) ~ (i)
observe that for Y as in theorem 3.14

From Myx(B) = ~e(~, and (3.15), we get TO = Myx
is in Hence,

Thus the result follows from (3.17) and (3.18).
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Remark. In view of (3 .15) and theorem 3 .16 the following conditions
are eouivalent

The next theorem is our extension of Kolmogorov’s theorem on mutual
subordination ([6], theorem 10).

3 . 20. THEOREM (mutual spectral subordination). - Let X E ~),
E E

Y E (9) and Y C X. Then X « Y if f

Proof. - Let Myx. Mxx. Mxy and Myy be the derivatives of Myx, Mxx,
Mxy and Myy respectively w. r. t. the finite-valued non-negative c. a.

measure trace Mxx + trace Myy on. Y implies

therefore from (3 . 21 ) and (3 . 22)

Hence MXX ~ Myx and E (H,
Conversely, from polar decomposition for a bounded operator and

theorem 3.16 (iii) we = where V is a partial isometry.
Hence from the fact that 03A8 = dMxx/dMxy E (9V, follows that

is a bounded operator on Je. Now Mxx ~ Myx and Y ~ X
imply

By (3.23) and the fact that is a bounded operator on 9V we
conclude
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From theorem 3.16 (iii),

Thus

Hence 
’

F’rom (3.25), (3.26) and theorem 3.16 we get X  Y.

3.27. Remark. a) The finite-dimensional extension of Kolmogorov
theorem given by Rosenberg ([17], 1.12) is a consequence of our above
theorem. The conditions on rank, which are valid only in the finite-dimen-
sional case are easy consequences of the measure theoretic results (see
e. g. [15], p. 362).

b) If we take the definition of rank given in Halmos [4] we get from
(3.19) (iii) and (4.12) of [7] that the rank rank and hence

rank rank M~x The condition on rank in ([17], 1.12) can be
shown to be necessary in the infinite dimensional case.

We now introduce the concept of E-orthogonality.

3.28. DEFINITION. - Let X and Y be in ~). We say that X is

orthogonal Y if -L and write X 1 E Y.
The following theorem is extended version of the result due to Kolmo-

gorov ([6], theorem 12) on subordination and orthogonality.

3.29. THEOREM. - Let X, Y, (9) such that X = Y + Z.

If Y then Y and Z are subordinate to X if f Myy MXX-MZZ.
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Proof - Assume Y, Z  X. Then Myx E H2,Mxx, Mzx E H2,MXX with

where

Therefore Y if f Myx -LMxxMzx by (2.11) and (3 .12). But

Myx(B) = and Mzx(B) = Mzz(B),

since Y Hence Myy 
Assume Myy 1-MxxMzz. Then Myx 1-MxxMzx. But

Since X = Y + Z we get + = I in L2,M. Also since Y L Z,

But = 4, because MYY so that

Therefore b theorem 3 .16 we get Y  X.

Hence Z  X.

SUBORDINATION

OF WEAKLY STATIONARY PROCESSES

4. Let ;~’, C~ be separable Hilbert-spaces and (G, + ) be a locally
compact abelian group. Following Payen [14] we say that {Xt, t E G }
is an W)-valued weakly stationary process if is a function s - t.

If { Xt, t E G } E G } are U) and HS(Jf, ~)-valued sta-

tionary processes respectively then we say that Xt and Yr are stationarily
correlated if is a function of s - t.

Let MX and IDly be the closed subspaces of (!) generated by the ranges
of {Xt, t e G } and {Yt, t E G } respectively. By a slight extension of
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an argument of Payen ([14], p. 356) there exsits a group of unitary operator
{U,, (1) to d such that

Under the condition that t -~ Xt and t - Yt is a continuous map we get
([14], p. 363)

where G is the character group of G and E is a spectral measure on the Borel
algebra 93 of sets generated by the open subsets of G for ~.
We call the measures Mxoxo and MY0Y0 the spectral measures of Xt

and Yt respectively following our terminology in [7]. In the terminology
of Kolmogorov [6] we call the measures MxoYo and MY0X0 the cross-
spectral measures of Xt and Y~.
We observe that

(4.2) MX = MX0

We now give the definition of subordination of stochastic process as
a direct extension of the classical one in [6].

4. 3. DEFINITION. - Let Xt and Yt be HS(JIt, (!)) and HS(.%B ~)-valued
stationary stochastic processes which are stationarily correlated. Then

Yt is said to subordinate to Xt if MY ~ imx.

4.4. Remark. ln view of (4.2) we get that Yt is subordinate to Xt
if f Xo.
From the above remark the following theorems are the immediate conse-

quences of theorems 3.16, 3.20.

4.5. THEOREM. - Let Xt and Yt be U) and ~-valued
stationary processes which are stationarily correlated. Then

a) the following conditions are equivalent :
(i) Yt is subordinate to Xt,

(ii) There exists a function such that Yo = 

(iii) The cross-spectral measure Myoxo E H2,Mxoxo with TI> = Myoxo and
Myoyo(B) = for all B E 58.

(~) For each t, the operator U, is uniquely defined on the closure of (ID1x + onto

itself.
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b) if Yt is subordinate to Xt then Xr is subordinate to Yt if f MY0X0
and dMX0X0/dMY0X0 E (H,

4.6. DEFINITION. - Let Xt and Yt be HS(~, C~) and U)-valued
stationary processes which are stationarily correlated. Then Xt, Yt are
orthogonal if = 0 for all t, s.
The following theorem is an extension of Kolmogorov’s result ([6],

theorem 12) to the processes studied by Payen [14]. The proof is immediate
from theorem 3 . 29 and (4. 2) and is omitted.

4.7. THEOREM. - Let Xt, Yt and Zt be HS(~, ~)-valued stationary
processes which are stationarily correlated such that Xt = Yt + Zr, where
Yt, Zt are orthogonal. Then Yt, Zt are subordinate to Xt if f Myoyo and
Mzozo are MX0X0-singular.

5. In the prediction theory of univariate processes Szego theorem has
played a very important role [3]. The generalization of Szego theorem
with applications to multivariate prediction theory depends on the following
fact :

(5.1) => rank 03A6 = const. a. e.,

where denotes the class of all matrix-valued functions square-integrable
with vanishing negative Fourier coefficients. The proof of (5.1) was given
by Masani [8] and Matveev [11] applying theorems on Hardy class func-
tions. Recently, Rosenberg [17] presented a new proof of (5.1) based on
the subordination of stationary stochastic processes. We extend the

result (5.1) to the infinite-dimensional case without recourse to the theory
of {D)-valued Hardy class functions about which the results are
fragmentary. Let ~, W be two separable Hilbert spaces and L2 be the
Hilbert space of HS(Yr, ~-valued functions 0 on the interval [0,27r] such

~27T
that Jo I is finite. The space L° + will denote the subspace of

L2, consisting of functions with negative Fourier coefficients zero.

5 . 2. THEOREM. - Let 03A6 E L02 + then rank 03A6(ei03B8) = const. a. e.

Proof - We know by the very definition that
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Choose a L2(Q))-valued stationary process with = 

Define the stationary process

From (5.4) and Payen ([14], p. 364 and p. 375), we get that

where B is a Borel subset of [0,27c]. Clearly X" is purely non-deterministic
([14], p. 359). Let Zn be the innovation process of X~ ([2], p. 897). Then

Xn, Zn are mutually subordinate ([2], p. 899, see also [5]). Also = ~mnG
where G E Yf) (see e. g. [2], p. 897). Hence

From remark 3 . 27 we get rank D*(8)D(8) = rank G a. e.
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