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Ergodic properties
of marked point processes in Rr

R. T. SMYTHE

Dpt of Mathematics, University of Washington,
Seattle W 98195 U. S. A.

Ann. Inst. Henri Poincaré, Section B :

Calcul des Probabilités et Statistique.

SUMMARY. - We consider a point process in r-dimensional Euclidean
space (Rr); with each point we associate an ancillary random variable Y~.
Given a region T of Rr, let NT be the number of points in T, ST the sum
of the Y~ corresponding to these points. Under various hypothesis on the
point process and the Yi, the a. s. convergence of ST/NT (or 
as T -~ Rr is investigated. Particular emphasis is given to the cases where
the point process is stationary or completely random and the Yi are equi-
distributed.

RÉSUMÉ. - On considère un processus ponctuel dans l’espace eucli-
dien Rr de dimension r; à chaque point, on associe une v. a. auxiliaire Yi.
Étant donné une région T de Rr, soit NT le nombre de points dans T,
ST la somme des Yi correspondants à ces points. Sous des hypothèses
diverses sur le processus ponctuel et sur les Y~, on étudie la convergence p. s.
de ST/NT (ou ST/E(NT)) lorsque T -~ Rr. En particulier, on étudie les
cas où le processus est, soit stationnaire, soit « complètement aléatoire ))
et les Y~ sont équidistribués.

0. INTRODUCTION AND NOTATION

Consider a point process in Euclidean r-space, i. e. for every cv belonging
to a probability space (0, Y, P) we have a realization which is a collection
of points in Rr.
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110 R. T. SMYTHE

For any Borel set A in Rr denote by N(A, the number of points in A
for the realization co. We assume that :

HYPOTHESIS 1. - For all bounded A, E(N(A, m))  oo .

The reader is referred to, e. g. [3] for details of the setup.
Given we can enumerate the points of the realization as ~ 1.

Let ~ be a sequene of random variables defined on (Q, ~, P) ;
suppose that with each we associate Yi(co). We then have what is
often called a marked point process, the Y~ being the marks (cf. [3],
p. 315).

Denote by T a rectilinear region of Rr. The regions of interest to us
r

will generally be either of the 0  si  where

S - (S1, S2, ..., Sr) is a point in Rr, or else 1 ~ S : - ti  S~  ti ~,
N 

i = = ’ 
N

where t > 0 for i = 1, 2, ..., r. Given such a T, let .

We may regard ST as the sum of a random number of random variables.
If, for example, when r = 2 we think of the as representing sites
where trees grow in a forest, and as the number of board feet in the
tree at site then ST represents the potential yield of the region T.
One can then inquire about the asymptotic behavior of ST as T increases
without bound ; for example, under what conditions will S T/NT or ST/E(NT)
converge with probability one, as the coordinates of the corners of T tend
independently to oo?

We shall consider three separate (but overlapping) cases corresponding
to different hypothesis on the point processes and on the ancillary random
variables Yk; these are treated in paragraphs 1-3.

CASE 1. - The point process is stationary, i. e.,

P {N(Ai, 01) = k;, 1 = 1, 2, ... m ~ = P {N(A, i + y, 01) = k i, i = 1, 2, ... m ~
for any y E Rr, where A + y is the translate of A by y.

CASE 2. - The point process is completely random (but not necessarily
stationary) in the sense that if Ai, ..., Am are disjoint bounded Borel
sets, then { N(Ai, ), ... , N(Am, ) } are independent.

Annales de l’Institut Henri Poincaré - Section B



111ERGODIC PROPERTIES OF MARKED POINT PROCESSES IN R~

CASE 3. - No assumptions are made concerning the stationarity or
independence properties of the point process.
We emphasize that Hypothesis 1 will always be in force.
The author would like to thank Professôr J. H. B. Kemperman for a

stimulating conversation which inspired this work, and Professor Ron Pyké
for some helpful remarks.

1 THE STATIONARY CASE 
‘

Suppose the point process is stationary over Rr. For each k = 1, 2, ...

let there be given a séquence { Yk } ~° 1 of exchangeable random variables,
independent for différent k, and independent of the point process. Given
a realization cv, we enumerate the points some order. Thinking
of our forest analogy in § 0, we would like to allow the size of the marks
to depend on the density of the points in the realization.. This considération
motivates our model described below.

DEFINITION. - Let d > 0 be fixed. Call a point in the realization

a « type k point » if there are k-1 other points of the realization contained
within a sphere of radius d centered at 
We now « mark » the point process in the following way : if is of

type k, we mark it with This gives a ’màrked point process which
we can represent this way (see [3]) : with each cc~ we associate a random

set function S(., defined on the bounded Borel sets of Rr, where S(A, cc~)
is the sum of the marks corresponding to the points of the realization cr~

which lie in A. If ~ is the set of such random set functions, let E, the

o-algebra of measurable sets, be generated by all subsets of the form

{ S : S(A, 01) E B } where A is bounded Borel in Rr and B is a real Borel
set; we may then regard the marked point process as being defined on
(~, E, P).

If t E let ti e Rr be defined by ti = (0, 0, .. 0, t, 0, ..0) (where the t
is in the ith place). For S(., 03C9)~F, define point transformations T;
(i = 1, 2, ..., r) as follows : T;(S(A, 01)) = S(A + cc~). For each i, the

set {T; is a group of measurable transformations; it is evident that

under the hypothesis of stationarity on the point process and the assump-
tions made on the séquences { that the transformations T; are measitre-
preserving.

Let C dénote the unit cube centered at the origin, with edges parallel
to the coordinate axes, and left = S(C, co). The following theorem

Vol. ’XI, n~ 2-1975. .. ~ ’ 
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112 R. T. SMYTHE

is essentially due to Zygmund [13] ; see Calderon [1] for a more general
formulation.

THEOREM 1.1. - With notation as above, let f be a random variable
such that E( f ~ ] (log+ )r~ 1)  oo. Then the limit

exists a. s. (and is finite). The limit is an invariant random variable with
respect to each group T;.
With the aid of Theorem 1.1 we can prove the main result of this section.

Recall that N(C, 01) is the number of the points of the realization which
lie in C.

r

THEOREM 1.2. - With notation as above, let T = ~ {s:
If E(N(C) (log+  oo and sup (log+ |Yj1|)r-1)  oo,

then ST/NT converges a. s. as each t i --~ oo (independently).

PROOF. - We apply Theorem 1.1 to (= S(C, ce)). Assume that
the moment conditions of Theorem 1.2 are satisfied; then

We will get an upper bound on ( (log+ N(C) = n). For
each k = 1, 2, ..., let Ak be the set of all k-tuples (ni, ... nk) such that

nl + ... + nk = n (n is now fixed for the moment). Let Bk be the set

of all k-tuples of positive integers (il, i2, ... ik) with ii 1  i2 ...  ik.
Define go = 

Then

Now by the independence of the ~ and the point process,

Annales de l’Institut Henri Poincaré - Section B



113ERGODIC PROPERTIES OF MARKED POINT PROCESSES IN Rr

where T~ is the sum of nl random variables distributed as Yii, n2 random
variables distributed as Y2 , etc. Now

The second term in the right-hand side of (1.6) is bounded by

Using. the convexity of the function x - ( x ~ ] ~)r-1, we get that

From (1.4), (1.5), and ( 1. 7) we have that

J

and from (1.2) it follows that E(lfo ] (log+ Ifo  oo .

Applying Theorem 1.1 to fo, we have, if A is the intensity of the point
process (i. e., E(N(C)) = ~,),

The integral in (1 . 8)-call it IT-is not quite equal to ST, but we will show
that (IT - 0 a. s. Suppose we set up the marked point process
as before, except that instead of using the marks we use Y ~ ~ , with all
else remaining the same. We use tilda to dénote the accompanying quan-
tities Si, etc.). Let T be defined as in the statement of the theorem, where

each t is assumed to be large.

N N N N

that [  |T2 - T1|. But IT2/E(NT2) and converge
a. s. to the same limit as each ti ~ oo by Theorem 1.1, and E(NT2)/E(NT1)-~1.
It follows that~~ ( IT2 - ITI 0 a. s., hence that

a. s. as each ti ~ ce. To complete Theorem 1. 2 we note that, since the
point process itself is stationary, another application of Theorem 1.1 as

Vol. XI, no 2 - 1975.



114 R. T. SMYTHE

above gives that N T/E(N T) is a. s. convergent as each t~ i --~ oo. Thus we

finally have that ST/NT is a. s. convergent (to an invariant random variable)
as each fi -~ 

’ 

REMARK. - It is not essential that the ’sets T defined above be products
of intervals symmetric about the origin ; the sides of the « rectangle » defin-
ing T may grow at different rates. One way to see this is by using the one-
sided version of Theorem 1.1 (in 1.1 take the integrals from - t to 0 or
from 0 to t j) in each orthant separately; the invariants sets will be the same
in each case so the limit of STJE(N TJ for i = 1,2, ... 2r will be a. s. the

same, where STi is the sum over that part of T lying in the ith orthant. Since
NT = NT( + NT2 + ... + NT2r, the limit of ST/E(NT) will still exist a. s.

EXAMPLE 1.1. - If the point process is a stationary Poisson process
with parameter À (i. e., N(C) has a Poisson distribution with parameter À),
the first condition of Theorem 1.2 clearly holds. Hence the conclusion of
Theorem 1. 2 will hold whenever the condition on is satisfied.

For some purposes a simplified version of our marked point process
where we have only one i. i. d. sequence of marks ~ Y~ ~ may be more
appropriate. If the point process is stationary Poisson then the invariant
field will be trivial (since the Poisson process is completely random); then
we clearly have ST/NT -+ E(Yi) a. s. It follows from [10] that for this conver-
gence the condition E(] Y 1 ] (log+ |Y1|)r-1  oo cannot be weakened.

2. THE COMPLETELY RANDOM CASE

Now suppose we have a completely random point process defined on the
positive orthant (later we will indicate how to extend the results to the
case where the point process is defined on all of Rr). For each lattice point
with positive integer coordinates, denoted n, let Cn denote the semi-open
unit cube with « top » vertex at n and edges parallel to the coordinate axes.

For each n let there be given a sequence Y n ~ ~° 1 of i. i. d. random variables;
let the séquences corresponding to different n be mutually independent,
and let each sequence be independent of N(Cn). Let be an enu-

meration of the points of the realization 01 which fall in Cn; with X i (a~) we

associate the « mark » Y n (a~). An important special case is that in which
we have a single i. i. d. sequence Yi with for each 11 (Instead of taking

Annales de l’Institut Henri Poincaré - Section B



115ERGODIC PROPERTIES OF MARKED POINT PROCESSES IN R’~

thé integer grid on we could take any rectangular grid ; for simplicity
we limit discussion to thé integer case).

Let Z~ = Y~ and let S~ = Z,. The random variables Z~ are now
Xi~Ck

mutually independent. Dénote thé quantity E(N(0, ~]), where

(a, &#x26;] = { ~ : ~  ~ ~ &#x26; }. Note that 0, where Abn dénotes the

differencing of b over thé 2’’ vertices neighboring n which flj.

2.1. A law of large numbers

We will need a slight generalization of a result announced without proof
in [7~] (p. 169) :

THEOREM 2.1.1. - Let { ~ }~N’’ be such oo as k - oo and

0 for all k e NB Let be independent random variables
with zéro mean. Let ~ be a positive, even, continuous function on R~

such that as |x| ] increases, increases and decreases.

PROOF. - The key to the proof is an inequality analogous to the Kolmo-

gorov inequality for r = 1. This was first established by Wichura in [12],
and the constant improved later in [Il].

LEMMA 2.1.1. - Let be independent with zero means and

finite variances, Sn = Xj. Then for any À > 0,

Once the lemma is established, the proof of Theorem 2.1 is very similar
to the one-dimensional theorem (see, e. g., [2], p. 124). We truncate the Zn
at bn to form the truncated array Yn ; an application of Lemma 2.1 then

gives

Vol. XI, n° 2 - 1975.
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The convergence then allows us to conclude that

hence that

But { and are equivalent arrays so that converges a. s.

A simple generalization ofKronecker’s lemma (see, e. g. [2] p. 123) to N’ then
yieids thé résulta 0 a. s. (it is hère that thé hypothesis 0394bk > 0 is

essential).[]
"

2.2. An ergodic theorem
for completely random point processes

Returning now to our point process, we center thé Yni by defining
yni = y" - E(Y"), and let

Then = 0 and we can apply Theorem 2.1 to thé Z~.

THEOREM 2 . 2 .1. 2014 If for some a

then

i. i. d. random variables with the distribution Yn . If 1  a  2,

Annales de l’Institut Henri Poincaré - Section B



117ERGODIC PROPERTIES OF MARKED POINT PROCESSES IN R~

n ( ) n j )ce(see, e, g. [4]) ; since the Yi are independent of N(Cn) and E Y"  ce,

we have

Now

(thé first inequality is thé « Cr inequality )) ([7], p. 157) and thé second
follows by Jensen’s inequality) ; so upon applying Theorem 2.1.1 with
~ = E(N(0, ~]), thé convergence of thé séries in Theorem 2.2.1 implies
that 

The case of most interest, and to which we restrict ourselves in the remainder

of . the paper, is that in which the Yni have the same distribution Y for each ", n,
where E( [ Y [ ")  ao (it is obvi ous from Theorem 2 . 2 .1 that the weaker

conditions sup E( ")  oo, ~~ ~ C would permit the same
n

conclusions

Denote by the measure E[N(A)]. Then the series in the theorem is
just (to a constant multiple).

COROLLARY 2.2.1. - If the { Y" ~ are identically distributed with
E(JY"  oo for some 1 ~ a  2, and

(i) (2.2.1) converges.

Then

Proof - Immediate from Theorem 2.2.1 and the remarks above.

Vol. XI, n" 2 - 1975.
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Let v be thé atomic measure on N’’ which sweeps all of thé -mass in Cn
to thé point n, and let U(x) = v(0, xj. Then thé séries (2.2.1) is simply.

where R~ is the positive orthant of Rr. At first glance it may seem that this
integral should always converge when a > 1. This is true when r = 1,
but not in general.

LEMMA 2 . 2 .1. - When a > 1, (2 . 2 . 2) converges under either of the
following conditions :

(i) ,u is a product measure,
{ x : U(x)  C} = o(C1 +a) for any 03B4 > 0.

Proof - It follows by Fubini’s theorem (see, e. g. [5], p. 421) that

When a > 1, condition clearly implies the convergence of the right-
hand side product measure, we apply (2.2. 3) separately

to each factor, noting that v x : U(x)  1  1 in one dimension.
Note that, in the only case of interest, i. e., = 00, (2.2.1) will not

converge when a = 1.

Remark. - It is easy to check that, for (2. 2.2) to converge, it is enough
that Il be « asymptotically » a product measure in the sense that there exist
V1, ... vr such that (if n = (nl, ... nr) :

It would be interesting to characterize those measures for which (2.2. I) is

convergent.

2.3. The Poisson process

The most common completely random point processes on Rr are the
(not necessarily stationary) Poisson processes ; if Ai, ..., Ak are bounded
disjoint Borel sets, then N(Ai), ..., N(Ak) are independent, with Poisson
distributions with parameters ..., respectively, where p is a

Annales de l’Institut Henri Poincaré - Section B
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non-atomic Radon measure on the positive orthant. Since we are only
interested in the case when the point process has a. s. an infinite number of

points we will assume

which implies by Borel-Cantelli that 1 i. o.) = 1.

PROPOSITION 2.3.1. - Suppose the point process is Poisson and that

Il satisfies (2 . 3 .1 ) and one of the conditions of Lemma 2 . 2 .1. Then if

E( ~ Y Irl)  oo for some a > 1,

Proof. - Under thé stated conditions (2.2.2) converges by Lemma 2.2.1.

Now N(0, ~] = and thé N(C~) are independent; further,

~~
Var = since is Poisson (~(C~)). Thus

so

and thus

Under further restrictions on ~c, the hypothesis E( ~ Y lex)  oo for some

ce > 1 can be weakened. Suppose we are working in r dimensions and that

Making essentially the same calculation as in § 1, we have that

Vol. XI, n° .2 - 1975.



120 R. T. SMYTHE

LEMMA 2.3.1. - There exist constants Ci and C2 such that, for 

The proof of this is elementary and unenlightening and thus will be omitted.
Now let Z. = Zn - E(Zn).

LEMMA 2.3.2. - There exist constants Kl and K2 such that for all n,

Proof - This follows from the remarks preceding Lemma 2 . 3 .1 and
an easy calculation.

PROPOSITION 2 . 3 . 2. - Suppose the point process is Poisson with a product
measure satisfying (2.3.1). Then if (2.3.2) holds and

Proof. - We apply Theorem 2.1.1 to thé random variables Zn, with
= ~ ~ ~!y"~. Using (2.3.2) and Lemmas (2.3.1) and (2.3.2),

we have to show that thé séries

are convergent. But if Il is a product measure, the first series can easily
be shown to converge by Lemma 2.2.1 and the second converges by hypo-
thesis. Thus

as in Prop. 2.3.1, yielding the result.

Annales de l’Institut Henri Poincaré - Section B
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COROLLARY 2 . 3 .1. - Suppose the point process is Poisson,  is a .product
measure with a bounded density, and (2.3.2) holds. Then

Proof. - Obvious from Prop. 2.3.1.
The Poisson process considered here is not far from being the most

general case. If we impose the condition that the process have no multiple
points, then the most general completely random point process with no
fixed atoms and no deterministic component is the Poisson process [6].
When multiple points are permitted, the most general completely random

point process with no fixed atoms and no deterministic component is the

compound Poisson process [8]. For this (see [3]) the assumptions are the same
as above except that the Poisson distributions there are replaced by compound
Poisson distributions of the following type:

~2~ - - ’ are non-atomic Radon measures on the Borel sets of the

positive orthant, with  oo for all compact sets A. N(A) is the
k

sum of a Poisson number (with parameter à Ilk(A)) of non-negative
k

i. i. d. random variables ZA, independent of the Poisson number, with

Thus this point process is itself a marked point process, with the marks
having nonnegative integer values and the underlying process Poisson.

PROPOSITION 2.3.3. - Let the point process be compound Poisson as
above. Suppose that

Vol. XI, n° 2 - 1975.
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Proof. - By Corollary 2 . 2 .1 it suffices to show that

£

-which is true by (/Z)2014and that N(0, n]) - 1 a. s. as n ~ ~. Now

N(0, ~] = and Var (N(CJ) = ~.~~(C~) by an easy calculation.
_ 

_ 

_ 

j ~
Thus thé convergence implies that {r~(N(C~))/~~(0, ~]} converges;

, k ...

hence by Theorem 2.1.1 that N(0, ~ 1 a. s. as n ~ ~.

’ ’ 

2.4. Generalizations 
’ 

Two questions remain concerning thé ergodic theorems of Sections 2.2
and 2.3. First, can thé convergence Sn/N(O,., ~] -~ E(Y) a. s. be extended
to show that t] ~ E(Y) a. s. as t ~ oo? Second, can we extend the
results for point processes defined on thé positive orthant to thé whole

plane ?
The following result shows that thé answer to thé first question is affir-

mative if E() Y  oo for some (x > 1 and if E(N(0, ~]) is reasonably
well-behaved as a function of ~. 

°

Proposition 2.4.1. - Suppose that

(2.4.1) lim E(N(0, + 1) = 1, (where 1 = (1, 1, ... 1)).

Then thé conditions (i) and of Corollary 2.2.1 are sufficient to give
~ E(Y) a. s. as t ~ ce.

Proof - Let [~] = ([~], ..., M). We then have

so it will suffice to show,

Annales de l’Institut Henri Poincaré - Section B
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and 03A3/E(N(0, n]) are a, s, convergent to the same limit; by (2 . 4 , 1),

[t]) convergés a, s, to zero, and sa therefore does
k~03B4[t]

Next we consider the case when the point process is defined on all of R’’.
As in the remark of § 1, we can treat each orthant separately, writing
S~ = STt + STZ + ... + ST2r. If the conditions on the point process and
the Y~ are sufficient to ensure that -~ E(Y) a. s. for each 1, then it is

easy to see that ST/NT will converge a. s. to E(Y). To be more precise,
let Zr dénote thé set of r-tuples with integer coordinates ; for n e Zr, if n lies
in the ith orthant, let 8i be the rotation which maps the ith orthant onto

the positive orthant, and tle bn = 8in]. We then have the following
result : 

~ ~ 

=

THEOREM 2.4.1. - Let T be an r-dimensional rectangle with .one vertex
in each orthant. Suppose that for some a, with 1 ~ a  2,

Then E(Y) a. s. as the coordinates of each corner of T tend

independently to oo . If we restrict T to rectangles whose vertices have inte-
gral coordinates, condition (iii) is dispensable.

COROLLARY 2.4.1. - Suppose the point process is Poisson and that,

in each orthant, Il satisfies (2. 3 .1) and one of the conditions of Lemma 2. 2.1.
Then if E( ~ Y ")  oo for some a > 1,

Finally we note that in [9] we have proved a slightly sharper version of
Theorem 2 , 1 , 1 which shows that for 1 K a  2, E(sup |Sk|03B1/b03B1k}  aS

k 
- - 

.

Thus under the hypothesis of Theorem 2.2.1,

Vol. XI, no 2 - 1975.
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we can conclude that E(sup |/( (0, k])03B1 ~. An argument like that of

Prop. 2.4.1 can then be made to extend this to say that

3. THE GENERAL CASE

In this section we will assume neither stationarity nor complete random-
ness of the point process, but we will restrict ourselves to point processes
on the positive orthant. It will be convenient here to assume that the point
process is defined on (Q, J, P) and an i. i. d. séquence { Yi} on (Q, J, P).
Our results- in this case are very incomplète ; insofar as they exist they are
based on the techniques of [I l ]. Given a realization of the point process,
we regard the resulting configuration of points as a « local lattice », in the
terminology of [11 J ; if a is a point in this configuration, we take to be
the number of points in the realization which are  a (in the natural order-
ing of Rr). We define the numbers

We have shown in [11] that if

(i ) varies dominatedly at infinity with index  2, and

(H) Y ) ~  00, 
_

then a strong law of large numbers holds,

Of course this requires that MW(x) be finite, which is not true for many
point processes (one could get around this by placing fixed atoms of the

process at unit intervals on each axis). The details of the convergence are

given in [l 1] ; we content ourselves here with one example of a class of pro-
cesses amenable to this approach.

EXAMPLE 3.1. - Suppose that, for almost all 01, we can partition the

positive orthant by a rectilinear grid in such a way that there is at least
one point and not more than K points in each cell. For example, suppose
we take r = 2 and the integer grid ; modify the point process temporarily
by placing fixed atoms at unit intervals on each axis, and dénote the modified

quantities with primes. It is easy to verify that for large N,

Annales de l’Institut Henri Poincaré - Section B



125ERGODIC PROPERTIES OF MARKED POINT PROCESSES IN Rr

is then ofdominated variation with index 1 and Y |log+| Y |)  oo,

it follows that S’03C9t()/N’(0, t] ~ E(Y) a. s. (P) as t ~ ~; it is easy to deduce
from this, using thé ordinary strong law of large numbers and thé fact
that N’(0, ~] -~ 1 a. s. (P), that S~)/N(0, ~] -~ E(Y) a. s. (P). Thus
on thé product space (Q x Q, y x j~ P x P), S,/N(0, ~] -~ E(Y) a. s.
as t 2014~ oo. The corresponding result holds in r dimensions if

A characterization of those point processes which can be treated in this
way appears to be difficult.
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