@article{AIHPB_1975__11_4_345_0, author = {Lin, Michael}, title = {Quasi-compactness and uniform ergodicity of {Markov} operators}, journal = {Annales de l'institut Henri Poincar\'e. Section B. Calcul des probabilit\'es et statistiques}, pages = {345--354}, publisher = {Gauthier-Villars}, volume = {11}, number = {4}, year = {1975}, mrnumber = {402007}, zbl = {0318.60065}, language = {en}, url = {http://archive.numdam.org/item/AIHPB_1975__11_4_345_0/} }
TY - JOUR AU - Lin, Michael TI - Quasi-compactness and uniform ergodicity of Markov operators JO - Annales de l'institut Henri Poincaré. Section B. Calcul des probabilités et statistiques PY - 1975 SP - 345 EP - 354 VL - 11 IS - 4 PB - Gauthier-Villars UR - http://archive.numdam.org/item/AIHPB_1975__11_4_345_0/ LA - en ID - AIHPB_1975__11_4_345_0 ER -
%0 Journal Article %A Lin, Michael %T Quasi-compactness and uniform ergodicity of Markov operators %J Annales de l'institut Henri Poincaré. Section B. Calcul des probabilités et statistiques %D 1975 %P 345-354 %V 11 %N 4 %I Gauthier-Villars %U http://archive.numdam.org/item/AIHPB_1975__11_4_345_0/ %G en %F AIHPB_1975__11_4_345_0
Lin, Michael. Quasi-compactness and uniform ergodicity of Markov operators. Annales de l'institut Henri Poincaré. Section B. Calcul des probabilités et statistiques, Tome 11 (1975) no. 4, pp. 345-354. http://archive.numdam.org/item/AIHPB_1975__11_4_345_0/
[1] Chaines abstraites de Markov vérifiant une condition de Orey. Z. Wahrscheinlichkeitstheorie verw. Gebiete, t. 19, 1971, p. 323-329. | MR | Zbl
,[2] Quelques applications probabilistes de la quasi-compacité. Ann. Inst. H. Poincaré (sect. B), t. 10, 1974, p. 301-337. | Numdam | MR | Zbl
and ,[3] Sur les propriétés asymptotiques de mouvements régis par certains types de chaines simples. Bull. Math. Soc. Roum. Sci., t. 39, 1937, n° 1, p. 57-115 ; n° 2, p. 3-61. | JFM | Zbl
,[4] Stochastic Processes. Wiley, New York, 1953. | MR | Zbl
,[5] Linear operators. Part I. Interscience, New York, 1958. | MR | Zbl
and ,[6] Ergodic theory of Markov processes. Van-Nostrand, New York, 1969. | MR | Zbl
,[7] On convex power series of a conservative Markov operator. Proc. Amer. Math. Soc., t. 38, 1973, p. 325-330. | MR | Zbl
and ,[8] Transition probabilities and contractions of L∞. Z. Wahrscheinlichkeitstheorie Verw. Gebiete, t. 24, 1972, p. 263-274. | MR | Zbl
,[9] On quasi-compact Markov operators. Ann. Prob., t. 2, 1974, p. 464-475. | MR | Zbl
,[10] On the uniform ergodic theorem. Proc. Amer. Math. Soc., t. 43, 1974, p. 337-340. | MR | Zbl
,[11] On the uniform ergodic theorem, II. Proc. Amer. Math. Soc., t. 46, 1974, p. 217-225. | MR | Zbl
,[12] Period of an irreducible operator. Illinois J. Math., t. 11, 1967, p. 24-39. | MR | Zbl
,[13] Mathematical Foundations of the Calculus of Probability. Holden-day, San Francisco, 1965. | MR | Zbl
,[14] Reduction of a Sub-Markov operator to its irreducible components. Nat. Sci. Rep. of Ochakomizu University, t. 24, 1973, p. 35-59. | MR | Zbl
and ,[15] Invariant ideals of positive operators in C(X). Illinois J. Math., t. 11, 1967, p. 703-715. | MR | Zbl
,[16] Operator theoretical treatment of Markoff's process and mean ergodic theorem. Ann. of Math. (2), t. 42, 1941, p. 188-228. | JFM | MR | Zbl
and ,