Ergodic properties of an operator obtained from a continuous representation
Annales de l'institut Henri Poincaré. Section B. Calcul des probabilités et statistiques, Tome 13 (1977) no. 4, pp. 321-331.
@article{AIHPB_1977__13_4_321_0,
     author = {Lin, Michael},
     title = {Ergodic properties of an operator obtained from a continuous representation},
     journal = {Annales de l'institut Henri Poincar\'e. Section B. Calcul des probabilit\'es et statistiques},
     pages = {321--331},
     publisher = {Gauthier-Villars},
     volume = {13},
     number = {4},
     year = {1977},
     mrnumber = {499082},
     zbl = {0383.60071},
     language = {en},
     url = {http://archive.numdam.org/item/AIHPB_1977__13_4_321_0/}
}
TY  - JOUR
AU  - Lin, Michael
TI  - Ergodic properties of an operator obtained from a continuous representation
JO  - Annales de l'institut Henri Poincaré. Section B. Calcul des probabilités et statistiques
PY  - 1977
SP  - 321
EP  - 331
VL  - 13
IS  - 4
PB  - Gauthier-Villars
UR  - http://archive.numdam.org/item/AIHPB_1977__13_4_321_0/
LA  - en
ID  - AIHPB_1977__13_4_321_0
ER  - 
%0 Journal Article
%A Lin, Michael
%T Ergodic properties of an operator obtained from a continuous representation
%J Annales de l'institut Henri Poincaré. Section B. Calcul des probabilités et statistiques
%D 1977
%P 321-331
%V 13
%N 4
%I Gauthier-Villars
%U http://archive.numdam.org/item/AIHPB_1977__13_4_321_0/
%G en
%F AIHPB_1977__13_4_321_0
Lin, Michael. Ergodic properties of an operator obtained from a continuous representation. Annales de l'institut Henri Poincaré. Section B. Calcul des probabilités et statistiques, Tome 13 (1977) no. 4, pp. 321-331. http://archive.numdam.org/item/AIHPB_1977__13_4_321_0/

[1] G. Choquet and J. Deny, Sur l'équation de convolution μ = μ * σ. C. R. Acad. Sci. Paris, t. 250, 1960, p. 799-801. | MR | Zbl

[2] Y. Derriennic, Lois « zéro on deux » pour les processus de Markov. Applications aux marches aléatoires. Ann. Inst. H. Poincaré B, XII, 1976, p. 111-130. | Numdam | MR | Zbl

[3] N. Dunford and J. Schwartz, Linear operators. Part I. Interscience, New York, 1958. | MR | Zbl

[4] M. Falkowitz, On finite invariant measures for Markov operators. Proc. Amer. Math. Soc., t. 38, 1973, p. 553-557. | MR | Zbl

[5] S.R. Foguel, Convergence of the iterates of an operator. Israel J. Math., t. 16, 1973, p. 159-161. | MR | Zbl

[6] S.R. Foguel, Convergence of the iterates of convolutions. To appear. | MR

[7] S.R. Foguel, Iterates of a convolution on a non-Abelian group. Ann. Inst. H. Poincaré B, XI, 1975, p. 199-202. | Numdam | MR | Zbl

[8] S.R. Foguel and B. Weiss, On convex power series of a conservative Markov operator. Proc. Amer. Math. Soc., t. 38, 1973, p. 325-330. | MR | Zbl

[9] M. Lin, Mixing for Markov operators. Z. Wahrscheinlichkeitstheorie, t. 29, 1971, p. 231-242. | MR | Zbl

[10] M. Lin, On the uniform ergodic theorem II. Proc. Amer. Math. Soc., t. 46, 1974, p. 217-225. | MR | Zbl

[11] A. Mukherjea, Limit theorems for probability measures on non-compact groups and semi-groups. Z. Wahrscheinlichkeitstheorie, t. 33, 1976, p. 273-284. | MR | Zbl

[12] R. Sine, A note on the ergodic properties of homeomorphisms. Proc. Amer. Math. Soc., t. 57, 1976, p. 169-172. | MR | Zbl

[13] A. Mukherjea and N. Tserpes, Probability measures on locally compact groups and semi-groups. Springer lecture notes in Mathematics, Berlin-Heidelberg, 1976. | MR