Ergodic invariant measures for actions of SL(2, Z)
Annales de l'I.H.P. Probabilités et statistiques, Volume 15 (1979) no. 1, p. 79-84
@article{AIHPB_1979__15_1_79_0,
     author = {Dani, S. G. and Keane, Michael},
     title = {Ergodic invariant measures for actions of SL(2, Z)},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     publisher = {Gauthier-Villars},
     volume = {15},
     number = {1},
     year = {1979},
     pages = {79-84},
     zbl = {0392.28018},
     mrnumber = {527316},
     language = {en},
     url = {http://www.numdam.org/item/AIHPB_1979__15_1_79_0}
}
Dani, S. G.; Keane, M. Ergodic invariant measures for actions of SL(2, Z). Annales de l'I.H.P. Probabilités et statistiques, Volume 15 (1979) no. 1, pp. 79-84. http://www.numdam.org/item/AIHPB_1979__15_1_79_0/

[1] R. Bowen, Periodic orbits of hyperbolic flows. Amer. J. Math., t. 94, 1972, p. 1-30. | MR 298700 | Zbl 0254.58005

[2] H. Furstenberg, The unique ergodicity of the horocycle flow, Recent Advances in Topological Dynamics. Lecture Notes in Math., t. 318, Springer Verlag, Berlin. | MR 393339 | Zbl 0256.58009

[3] K. Schmidt, Invariant measures on the circle. Preprint, Warwick.