Une généralisation du théorème de Kolmogorov-Aronszajn « Processus V-bornés q-dimensionnels : domaine spectral § dilatations stationnaires »
Annales de l'institut Henri Poincaré. Section B. Calcul des probabilités et statistiques, Tome 17 (1981) no. 1, pp. 31-49.
@article{AIHPB_1981__17_1_31_0,
     author = {Truong-Van, B.},
     title = {Une g\'en\'eralisation du th\'eor\`eme de {Kolmogorov-Aronszajn} {\guillemotleft} {Processus} $V$-born\'es $q$-dimensionnels : domaine spectral {\textsection} dilatations stationnaires {\guillemotright}},
     journal = {Annales de l'institut Henri Poincar\'e. Section B. Calcul des probabilit\'es et statistiques},
     pages = {31--49},
     publisher = {Gauthier-Villars},
     volume = {17},
     number = {1},
     year = {1981},
     mrnumber = {610497},
     zbl = {0489.60042},
     language = {fr},
     url = {http://archive.numdam.org/item/AIHPB_1981__17_1_31_0/}
}
TY  - JOUR
AU  - Truong-Van, B.
TI  - Une généralisation du théorème de Kolmogorov-Aronszajn « Processus $V$-bornés $q$-dimensionnels : domaine spectral § dilatations stationnaires »
JO  - Annales de l'institut Henri Poincaré. Section B. Calcul des probabilités et statistiques
PY  - 1981
SP  - 31
EP  - 49
VL  - 17
IS  - 1
PB  - Gauthier-Villars
UR  - http://archive.numdam.org/item/AIHPB_1981__17_1_31_0/
LA  - fr
ID  - AIHPB_1981__17_1_31_0
ER  - 
%0 Journal Article
%A Truong-Van, B.
%T Une généralisation du théorème de Kolmogorov-Aronszajn « Processus $V$-bornés $q$-dimensionnels : domaine spectral § dilatations stationnaires »
%J Annales de l'institut Henri Poincaré. Section B. Calcul des probabilités et statistiques
%D 1981
%P 31-49
%V 17
%N 1
%I Gauthier-Villars
%U http://archive.numdam.org/item/AIHPB_1981__17_1_31_0/
%G fr
%F AIHPB_1981__17_1_31_0
Truong-Van, B. Une généralisation du théorème de Kolmogorov-Aronszajn « Processus $V$-bornés $q$-dimensionnels : domaine spectral § dilatations stationnaires ». Annales de l'institut Henri Poincaré. Section B. Calcul des probabilités et statistiques, Tome 17 (1981) no. 1, pp. 31-49. http://archive.numdam.org/item/AIHPB_1981__17_1_31_0/

[1] J.L. Abreu, H-valued generalized functions and orthogonally scattered measures. Advances in Math., t. 19, n° 13, 1976, p. 382-412. | MR | Zbl

[2] G.D. Allen, F.J. Narcowich, J.O. Williams, An operator version of a theorem of Kolmogorov. Pacific Journal of Math., t. 61, n° 2, 1975, p. 305-312. | MR | Zbl

[3] S. Bochner, Stationarity, boundedness, almost periodicity of random valued functions. Proceed. of the 3rd Berkeley symposium on math. stat. and proba. Univ. of California Press, 1956, p. 7-27. | MR | Zbl

[4] H. Cramer, On the linear prediction problem for certain stochastic processes. ARTIV für MAT-Band, t. 4, n° 6, 1959, p. 45-53. | MR | Zbl

[5] N. Dunford, J.T. Schwartz, Part I, Linear operators. Interscience. New York, Wiley, 1966.

[6] J. Gorniak, Remarks on positive définite operator valued functions in linear spaces. Springer Verlag, Lectures Notes in Math., t. 656, 1978, p. 37-44. | MR | Zbl

[7] J. Gorniak, A. Weron, Aronszajn-Kolmogorov type theorem for positive définite kernels in locally corvex spaces preprint (to appear in Studia Math.), 1978. | EuDML | MR | Zbl

[8] P.R. Halmos, Measure theory. Van Nostrand, New York, 1950. | MR | Zbl

[9] M. Lœve, Probability theory. Van Nostrand (2e édition), 1960, Princeton, Toronto, London, Melbourne. | MR | Zbl

[10] R.M. Loynes, On generalized positive definite functions. Proc. London Math. Soc., t. 3, n° 15, 1965. p. 373-384. | MR | Zbl

[11] R.M. Loynes, On generalization of second-order stationarity. Proc. London. Math. Soc., t. 3, 15, 1965, p. 385-398. | MR | Zbl

[12] R.M. Loynes, Linear operators in V H-spaces. Trans. Amer. Math. Soc., t. 116, 1965, p. 167-180. | MR | Zbl

[13] V. Mandrekar, H. Salehi, The square integrability of operator valued functions with respect to a non-negative operator valued measure and the Kolmogorov Isomorphism theorem. Indiana. Univ. Math. J., t. 20, n° 6, 1970, p. 545-563. | MR | Zbl

[14] M.M. Martin, Utilisation des méthodes de l'Analyse spectrale à la prévision linéaire de certains processus stationnaires. Rev. CETHEDEC, t. 16, 1968, p. 137-148. | MR

[15] A.G. Miamée, H. Salehi, Harmonizability, V-boundedness and stationary dilation of stochastic Processes. Indiana. Univ. Math. J., t. 27, n° 1, 1978, p. 37-50. | MR | Zbl

[16] P. Masani, Dilatations as propagators of Hilbertian varieties. SIAM J. Math. Anal., t. 9, n° 3, june 1978, p. 414-456. | MR | Zbl

[17] H. Niemi, Stochastic processes as Fourier transforms for stochastic measures. Ann. Acad. Sci. Fenn. Series A. I. Math., t. 591, 1975. | MR | Zbl

[18] H. Niémi, On the support of a bimesure and orthogonally scattered vector measures. Ann. Acad. Sci. Fenn. Series A. I. Math., t. I, 1975, p. 249-275. | MR | Zbl

[19] H. Niémi, On stationary dilations and the linear prediction of certain stochastic processes. Comm. Physico. Math., t. 45, n° 4, 1975, p. 111-130. | MR | Zbl

[20] H. Niémi, On the linear prediction problems of certain non-stationary stochastic processes. Math. Scand., t. 39, 1976, n° 1, p. 146-160. | MR | Zbl

[21] H. Niémi, On orthogonally scattered dilations of bounded vector measures. Ann. Acad. Sci. Fenn. Séries 1. I Math., vol. 3, 1977, p. 43-52. | MR | Zbl

[22] A. Pietsch, p-majorisierbare vektorwertige Masse. Wiss Z. F. Schiller, Univ. Jena Math. Naturwiss. Reihe, t. 18, 1969, p. 243-247. | MR | Zbl

[23] R. Rogge, Masse mit werten in einem Hilbertraum. Wiss Z. F. Schiller, Univ. Jena Math. Naturwiss. Reihe, t. 18, 1969, p. 253-257. | MR | Zbl

[23 bis] M. Rosenberg, Minimum trace quasi-isometric dilations of operator-valued measures and minimum trace orthogonally-scattered dilations of multivariate vector measures. Jour. of Multivariate Anal. (à paraître).

[24] A.Yu. Rozanov, Spectral Analysis of Abstract functions. SIAM The theory of Proba. and. Appl., t. IV, n° 3, 1959, p. 271-287. | MR | Zbl

[25] W. Rudin, Real and complex Analysis. Mac Graw Hill. New York, 1974. | MR | Zbl

[26] D. Tjöstheim, J.B. Thomas, Some properties and examples of random processes that are almost wide sense stationary. I. E. E. E. Trans. Inf. Th., t. 21, 1975, p. 257-262. | MR | Zbl

[27] A. Weron, Prediction theory in Banach spaces. Lecture Notes in Math., t. 472, 1975, p. 207-228, Springer-Verlag. Berlin. | MR | Zbl

[28] B. Truong-Van, Contribution à l'étude des processus V-bornés multidimensionnels. Thèse de 3e Cycle, Université P. Sabatier, Toulouse, 1979.