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ABSTRACT. - Finitely many symmetric random walks in ~Z interacting

by simple exclusion are considered. It is assumed that  oQ

x~Z

where p(x) is the probability that a single random walk jumps by x. A
coupling Q of this process and the corresponding free one (where the
exclusion condition is dropped) is established so that

where n is the number of particles, Xi(t) [xi°~(t) ] the position at time t of
particle i in the interacting [free ] process and A may depend on a, y and n.

RESUME. - On considere un nombre fini de marches aléatoires syme-
triques sur Z qui interagissent par exclusion simple. On suppose que

x2 p(x)  00 où p(x) est la probabilité pour 1’une quelconque des
xe2

marches aléatoires de faire un saut de longueur x. On définit un couplage Q
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72 A. DE MASI AND E. PRESUTTI

entre ce processus et le processus indépendant qui lui correspond (c’est-a-dire
sans condition d’exclusion) avec la propriété :

où n est le nombre de particules, ~xi°~(t)~ la position au temps t de la
particule i dans le processus avec interaction [indépendant] et A peut
dépendre de (X, y et n.

1 INTRODUCTION AND RESULTS

A system of identical particles randomly moving in Z with simple exclu-
sion interaction is self dual when the probability of jumps is symmetric [6 ].
In such a case the n-correlation functions of the time dependent measure
describing a system with infinitely many particles can be computed in
terms of a process of only n symmetric simple exclusion random walks.
As a consequence questions of physical interest like approach to global
equilibrium, see for instance [6 ], or hydrodynamical behavior (local equi-
librium distributions), see [4], [5], [1 D ], are reduced to the study of a
process with finitely many particles. The relevant probability estimates
often exploit the closeness between the interacting system and the free
one [i. e. when the simple exclusion condition is dropped], see for ins-
tance [1 ], [4 ], [S ], [10 ]. In these papers however the estimates were obtained
under a short range condition on the length of the jumps, actually for
symplicity only the case + 1 was considered over there. In this paper
we study the long range case in the assumption that the probability p{x)
of a jump by x, x E Z, is such that

We prove that there exists a coupling between the free and the interacting
processes, so that the typical distances between corresponding particles
will grow less than for any positive E ~ 0, as t diverges. In the
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73SYMMETRIC SIMPLE EXCLUSION RANDOM WALKS

remaining of this section we quote precisely the results we obtained and
we sketch the ideas of the proofs. In the nex section we will give the details.
The most natural way to compare the interacting and the free processes

is may be to use a « invariance principle » argument. As in [5 ], we renor-
malize space and time :

Here i = 1, ..., n denote the positions of the interacting particles,
T is the parameter which is going to diverge, i is the « renormalized » time,
~iT~(2) the rescaled process. ~~T ~(z) = (~ 1T ~(i), ..., is a collection of

processes in ~( [0, 1 ], (l~n), see for instance [2 ], and we prove the following
theorem along the lines of the analogous result in [5 ] :

THEOREM 1.1. - ~~T~(i) converges weakly in ~( [o, 1 ], [Rn) to where

b(r) = ..., bn(i)) is the process of n independent brownian particles,

its generator bein g 1 2~ x~ )> A, > ~ x2 ~ is defined in eq. ( 1.1 b).

Theorem 1.1 makes it plausible that a coupling exists between the free
and the interacting processes so that corresponding particles are typically
at distances less than t 1 ~2 + E (here we use that the free particles process
converges to the brownian one by the invariance principle). This estimate
has been strengthened in [4] ] where in the short range case a coupling

was introduced for which particles remain t4 close. Our main result

is the following improvement of Theorem 1.1.

THEOREM 1.2. - There is a joint representation (coupling) Q of the
simple exclusion process (its generator is written in eq. (1.6) below)
and the free one (its generator is defined in eq. (1. 8) below) such that

where

and A may depend on a, y and n but is independent of t.
If there exists G > 0 and G’ such that
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74 A. DE MASI AND E. PRESUTTI

then there is G" so that

The ergodic and hydrodynamic properties of the « infinite system »
are consequence of Theorem 1.2 via its

COROLLARY. - Let denote the distribution probability for n
particles at time t starting from x = xl, ... , xn according to the simple
exclusion [independent] ] process, then

where ( ~ . ~ ~ denotes the variational norm.
The proof of the Corollary is completely analogous to that in [4 and

so we just sketch the main idea. This is to couple the independent and

interacting processes as in Theorem 1.2 up to time T where t - T = t1 2+4~,
~ > 0, small enough. Then Theorem 1.2 states that independent and

interacting particles with same label E far apart, while the inde-

pendent particles are at mutual distance of order t 2. In the remaining time,
t - T, therefore the interacting particles behave as free (with probability
going to 1 as t diverges) and it is then possible to couple the two processes
by stating that particles with same label move independently until they meet,
after that they remain together. The corollary follows then from classical
estimates on the return time to the origin for independent random walks.
We remark that the main point in this argument is that particles with

same label are much closer to each other than to those with different labels :

this is ensured by the estimates of Theorem 1.2, could not be obtained
just by use of Theorem 1.1. On the other hand the Corollary, by use of
duality, entails an alternative proof of the ergodic properties for the infi-
nite system [6] J and it enables to prove the local equilibrium structure
of the model : we refer to [1 D ] for a more comprehensive description, here
we simply outline the main definitions. Denote by g the set of the extremal
invariant measures (i. e. Bernoulli) for the infinite system, let  be an initial
distribution for the infinite system and /It its time evolution at time t. Then

where d is a metric on the probability measures given by
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75SYMMETRIC SIMPLE EXCLUSION RANDOM WALKS

Dx is the space translation operator acting on measures, d is a distance

equivalent to the weak topology, for instance

where is the variational norm, An == { 2014 n, ... , n} and  | An is the
relativization of Jl to the algebra generated by the An and 
denotes the occupation random variable at site x, i. e. = 1, 0 if x is

occupied, empty. The physical meaning of the above condition is linked
to the hydrodynamical behavior of the system: it states the local equili-
brium property that in each bounded region and at any (large enough)
time the system looks like an equilibrium one, its parameter varying in
general with space and time (according to the « hydrodynamical equations »
for the system [10 ]). The assumptions on 11 for the result to hold are that
for each n E N there is a positive decreasing function x E lim 

such that for all n E N ..., xn E Zn

The result is derived rather straightforwardly by using duality and the
above Corollary to Theorem 1.2.
We conclude this section with a heuristic argument for the proof of

Theorem 1.2.

The coupling Q is the long range version of the coupling defined in [4 ]
for the short range case. The generator A of the simple exclusion process
can be written in the following way. Let f : then

This is the usual definition if f is symmetric and this can be assumed
because particles have been supposed to be identical. We have written A
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76 A. DE MASI AND E. PRESUTTI

like in eq. (1.6) because this offers a very natural correspondence with
the free generator B :

The generator C of the coupled process Q is in fact

The heuristic meaning of eq. ( 1. 9) is the following : if the free particle « i »
jumps by z at a given time, the same occurs for interacting particle « i »

if the new site is available, empty. It could also happen that it is occupied
by particle j, j  i, in this case no displacement occurs. If otherwise j > i
then particles i and j exchange their positions.
The main features of the coupling Q are the following. A different dis-

placement between free and interacting particles occurs only when a par-
ticle « tries to jump » on a occupied site. The differences of the displacements
are symmetric random variables, which, after suitable conditioning, become
independent. We will then be reduced to an estimate of sums of centered
independent random variables. Differences due to long jumps will play
a different role than those arising from the short ones. The latter will give
a contribution like in the short range case, while the former will be res-

ponsable for the slow decay of our probability estimates of Theorem 1.2.
As in [4 ] we will need an a priori estimate for the time spent by a pair of
particle at a mutual given distance, up time t. Again, as in [4 ], this will
be reduced, after a suitable coupling, to estimate the return time to the
origin of a single random walk. After conditioning to these times the diffe-
rences between interacting and free displacements become independent,
so it only remains to estimate the number of forbidden jumps occurring
at that distance (with their sign) and then to sum them up. This will be quite
straightforward and the result is quoted in Theorem 1.2.

2. PROOFS

An important tool in the proofs of Theorem 1.1 and 1.2 is an a priori
estimate on the time spent by a given pair of interacting particles at a
given distance. This is given by :
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PROPOSITION 2.1. - Let

1
then for every u > - exist c > 0 and c’ so that

2

Proof - We fix i and j. We condition to the random variable 
whose value is the first time particle i and j are at distance a. We will then
prove that ~

From eqs. (2.3) and (2.4), eq. (2.2) follows straightforwardly (because
of eq. (1.1)). -

The probabilities in eqs. (2. 3), (2.4) can be computed as if only i and j
were present. From eq. (1.6) it is in fact easy to see that if f is chosen to
depend only on xi and X j, then the same holds also for ..., xn).
This shows that the particular labelling given in eq. (1.6) and (1.7) does
not destroy the additivity of the process which holds for the identical
particles [6 ].
We first prove eq. (2.4). Let j~ be the set of trajectories such that up

to time t neither particle i nor j jumps by more than a/3, then it is easy
to see that 2tR(a). In the set {  t ~ there is a first

time f for which particles i and j are at a distance which is in the interval
(a/3, 2a/3), at least for large values of a. Starting from this time the tra-
jectories in {  t ~ behave as free, at least up to the time when
they have changed again their distance by more than a/3. In this interval
of time xJt) - behaves as a single random walk and so the proba-
bility that it moves by more than a/3 is given by the second term in the
r. h. s. of eq. (2 . 4), by Kolmogorov inequality, see for instance [7] and [3 ].
To prove eq. (2.3) we introduce ~’ as the random variable which counts
the number of returns of i and j at a distance a up to time t. We are going

to show that for every u > 1 exist D". D"’ > 0 so that

V ol. XIX, n° 1-1983.



78 A. DE MASI AND E. PRESUTTI

from this eq. (2.3) follows straightforwardly. Eq. (2.5) is a consequence
of the following fact. Let ~ be a random variable whose distribution is
the same as that of the first return time of particles i and j at distance a,
starting from distance a. Let P denotes the law of the process of countably
many independent random variables distributed each one like r~. Then

Since 1] is stochastically larger than r~~°~, which is the first arrival time

[for two free particles starting from distance a] either at zero distance
or back at distance a, we have

and from classical probability estimates, see for instance [9, VII. 32. P3 ]
eq. (2.5) follows.
Theorem 1.1 could be obtained as a consequence of Theorem 1.2,

however its proof can also be derived rather directely, so we have chosen
to give it explicitely in rather a sketchy way.

Proof of T heorem 1.1. We follow very closely the analogous proof of
. 

Lemma 3 . 3 of [S ]. The trajectory space is ~d( [o, 1 ], f~n), see [2 ], we denote
by ~S a bounded function measurable with respect to the a-algebra gene-
rated up to time s, 1; f is a C~ symmetric real function on 
with compact support. Ey denotes the expectation for the process on D
obtained from the simple exclusion one after the renormalization proce-
dure of eq. (1.2). Theorem 1.1 is a consequence of eq. (2.7) below for all

AT is the generator of the renormalized process, see eq. (2.9) below, B is
the generator for n independent Brownian motions

Theorem 1.1 is a consequence of eq. (2 . 7) because the sequence of pro-
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cesses is tight in the Skorokhood topology [8], and so each weak limit
satisfies

where E is the expectation with respect to the limiting process. Eq. (2.8)
is known to imply that the generator for the process E is B, namely that
the limiting process is brownian.
We will give now a sketch of the proof of eq. (2 . 7). From eqs. (1. 6) and (1. 2)

’
where is a sum restricted to those values of a such that

a
We now expand in the « small » parameter 20142014, to do that we need to

control the large values of a. From eq. (1.1 b) it is possible to prove that
there exists a non increasing function such that

We have

The first sum estimates the « large values of a » both for AT and the
term ( x2 ~ in B. The second sum bounds the remainder in the expansion

Vol. XIX, n° 1-1983.
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of the r. h. s. of eq. (2. 9) in the parameter The second order terms

cancel out with the corresponding ones in B f except for those which are
taken into account in the third sum of eq. (2.11).
By eq. (2.10) the first sum in the r. h. s. of eq. (2 .11) vanishes as T -~ oo :

by eq. (2 .10) in fact diverges and by eq. { 1.1 ) a2 p(a)  ~. The

second sum vanishes as ~p{T) when T diverges. T third one contributes
in eq. (2.7) as

where E is the expectation with respect to the unrenormalized process. By
Proposition 2.1 the limit can be estimated as

if 1  u  1.
2

The following properties will be often used in the proof of Theorem 1.2 :

P . 2.1. is Proposition 2.1.

P. 2.2. Let be a ll sequence, + 1 centered inde-

pendent random variables, then

P . 2 . 3. For ~ > 0, ~c~ is the probability on ~! defined as

1

If 03BE  -, there exists B’ such that
?
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The properties P . 2 . 2., P . 2 . 3., P . 2 . 4. can be proven easily. We will
also use

P . 2 . 5. Let
r _ 1 .

There exists C such that

In fact assume the opposite : then there exist sequences tk and ak such that

Then tK diverges and

which diverges as k - oo, against the assumption of eq. ( 1.1 b).

Proof of Theorem 1.2. The variable is defined on the

coupled process as follows (see eq. (1. 9)). For j  i and m positive integer
are the times when a) changes by z and x~(t) + z = x~~(t) ; b) x~°}(t)

changes by z and xJ(t) + z = x;(t). Define to be - z in case a) and z in
case b). Let finally, be such that > Then

The law of dj(t) is the same as when only particles i and j are present.
We introduce the following notation:

It is easy to see that conditioned to T(a, t) the law of N(a, t) is see

P . 2 . 3., with f = 2p(a)T(a, t) and that the law of S(a, t) conditioned to

Vol. 1-1983.
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N(a, t) is the distribution of the absolute value of the sum of N(a, t) inde-
pendent symmetric random variables with values ± 1.
We distinguish between large and small values of a. The latter are those

in ~t, see P . 2 . 5., and those such that a x tl/6. Their contribution is like
in the short range case. For t°‘r, a’  a, the sum does not exceed t°‘
with probability going to zero faster than any inverse power of t. The

large values of a will then be estimated and will determine the slow decay
of eq. ( 1. 3).
From éq. (2.12 b) 

. - --

where E(a) ( _ ± 1) are independent centered random variables. We fix

By conditioning to {N(a, t), S(a, t), T(a, t) ~ and using P. 2 . 2. we have

By conditioning to {N(a, t) ~ and using again P.2.2. we have

and using P. 2.1., eqs. (2.16), (2.17)

For we can use P. 2 . 3. with k = t£ in the estimate of eq. (2.18)
and using P. 2 . 5, we have
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for t so large that (see eq. (2.15)),

Let

then using P . 2 . 4. with k 

because for t large enough (see eq. (2.15)),

We shall now distinguish the case when p(x) decays exponentially from
the general case. If there is G > 0 and G’ so that

we have

which together with eq. (2.18), (2.19), (2.20) proves the theorem in the
exponential case.

In the general case it is important to distinguish values of a in the inter-
val (t16, t°‘~}, li.’  a and those with which will be treated as above. Let

By P . 2 . 4. we have

Vol. XIX, n° 1-1983.
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where x(a) are independent random variables which take value 0 with

probability 2p(a)t 2+E and value 1 with probability 1 - 203C1(a)t1 2+~. It is

easy to see that

because

Then

For n large enough the r. h. s. of eq. (2.24) is smaller than any negative
power of t, by eq. (2.21).

Since

because of eq. (2.15). From eqs. (2.18), (2.19), (2.20), (2.22) and (2.24)
and (2.25) we obtain the proof of the theorem.
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