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Exchanging the order of taking suprema
and countable intersections of 03C3-algebras
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Section B :

Calcul des Probabilités et Statistique.

SUMMARY. - be a-algebras in a probability space (Q, P).
We give necessary and sufficient conditions for the equality

to hold up to sets of measure 0. Roughly speaking they say that the tail

behaviour described by n n should not depend too much on the .?-part.
n=i

RESUME. Soient ~ , des tribus dans un espace probabilisé (Q, j~, P).
On donne des conditions necessaires et suffisantes pour l’égalité

L’idée essentielle de ces conditions est que l’influence de sur le compor-
or’

tement asymptotique décrit par j~ ~,~ soit modéré.
n= 1

1. INTRODUCTION

Let (Q, P) be a probability space. Let  and n (HE be sub 7-algebras’ 
r

of ;~ such that ~1 ~ ~2 ~ .... Then generally the 6-algebra ~ V 
n= 1
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92 H. V. WEIZSACKER

TC

is strictly smaller than n ff V ~n even modulo P-nullsets. A number
n= i

of problems in different probabilistic situations are related to this fact.
Some instances are mentioned at the end of this note. Our aim is to refor-

mulate the phenomenon in other measure theoretic terms and to contri-
bute in this way to a better under-standing of such situations. The main
idea is that the two cr-algebras are equal if and only if the tail behaviour

x

described does not depend too much on the ~ -part.
n= 1

2. NOTATION

For a 03C3-algebra B the symbol denotes the set of all real bounded

£3-measurable functions on the underlying space. Let (Q, j~, P) be a probabi-
lity space. If~, Yf are sub-6-algebras of $ we write ~ == ~P mod P whenever ~
and ~f induce the same sets of P-equivalence classes of sets. Suppose ~
and ~ are sub-6-algebras of ~ and that is a conditional probability
kernel on ~ given iF, i. e. P~ ( ~ ) is a probability measure on % for each w
and Pf(G) is a version of for each G ~ . We say that G is 

rable if there is a countably generated sub-a-algebra of  such that

~ = ~f mod P~ for P-almost all co.

3. THE RESULT

THEOREM. - Let (Q, ~, P) be a probability space. Let ~ and n (n e ~l)
be sub-a-algebras of j/, the ~n being decreasing with intersection ~~ .
Let %° be a generating system as a monotone class. Consider the

following conditions where in c)-e) we assume a conditional probability
kernel on ~1 given ~ to be fixed :

b) For every g in ~° and every 8 > 0 there is a finite dimensional subset ~
of ~ b and a uniformly bounded sequence (hn) such that for each n

Annales de 1’Institut Henri Poincaré-Section B



93TAKING SUPREMA AND COUNTABLE INTERSECTIONS OF 6-ALGEBRAS

c) For every there is some h in (~ ~ such that

(In this case for every h in (~ ~ the relation (1) is equivalent to
e.).

d) ~~ is P~-separable.
e) P~ is trivial on ~~ for P-almost every cc~.

Then a) und b) are equivalent. If n is P-separable (e. g. countably gene-
rated) for all n, then a)-d) are equivalent. If in addition P is trivial on ~~
then all five conditions are equivalent.

Let us illustrate these statements by the following elementary (counter-)
example.

Example. - Suppose (~n)~ > ~ i is a sequence of independent nontrivial
(e. g. coin tossing) random variables on (0, ~, P). Let ~ be the a-algebra
generated by the increments  = 03C3{03BEm+1 1 - 03BEm : m ~ 1 }, and let n be

the « future after time n » : n = o- { 03BEm : m ~ n }. Then ç V 

rable since for each n n = 1

But ~1 is not ~ V ~~-measurable even outside a P-nullset since 
mod P by Kolmogorov’s 0-1 law. Under the conditional law PF~ on 1
given the increments, the starting value of 03BE1 has a nontrivial distribution,
but according to (2) given the increments all other 03BEn and hence the tail
behaviour is in a 1-1 correspondence to the starting value Hence the

conditional law is also nontrivial on ~~, i. e. e) is violated. Further, for
different realizations of the increment process these laws P~ behave quite
differently on ~~ which makes at least plausible that c) and d ) do not hold.
Finally equation (2) shows also that in the representation of ç 1 as a

F V n-measurable function the dependence on the iF part varies strongly
with n. An approximation E~ " ~n(S 1)) as indicated in b) would
contradict this variation, so b) fails.

4. THE PROOF

For the sake of expository convenience we assume that Q is a product
space X x Y, considering products F ~ * rather than suprema F V *

Vol. XIX, n° 1-1983.



94 H. V. WEIZSACKER

(where This is a particular case of the situation in the theorem
but in fact the general case may easily be deduced to this situation via
the measurable mapping ~ ~ from (~, ~) to (Q x S~, fF O 
The conditional kernel (P~) in the theorem may now be substituted by
a kernel from (X, ff) to (Y, satisfying the generalized Fubini
formula

for all f in (~ @ where P~ is the first marginal of P.

I. Proof of the equivalence a) ~ b).

oc

1.1. a = b. Suppose ~ F ~ n = ff (x) ~ mod P. Fix g in 0
n= 1

and s > 0. Let g denote the function (.~, y) t-~ g( y). By decreasing mar-
tingale convergence we have

Choose no such that !! E~n() - E~~()~ 1  ~ 2 for all ?! 7- no- For

n ~ no choose a finite subalgebra /Fn of ff such that [ hn -  S

where hn = E~ n ° ~n( g). This is possible by increasing martingale convergence.
s

Similarly choose a finite subalgebra of /F such that [ h~ - E~~(g) ~1  2
where E~~~() For n > no let hn be the function h~. Finally let R

be the finite dimensional space V !Ii’ w . Then for each n we

~=1 i

have hn E hn( . , y) for every y E Y, ( ~ 1  ~.
This proves b) or rather its substitute in the setting of this proof.

oo

1.2. b) => a). We want to prove = 
1 

(a) for every
element a of sib. However once this assertion has been proved under one
of the following assumptions it may easily be extended to the next, more
general one :

a(x, y) = g( y) for some a(x, y) = g( y) for some J

a(x~ y) = for some f E g a E (~ O ~l )b ; a 

Annales de l’Institut Henri Poincaré-Section B



95TAKING SUPREMA AND COUNTABLE INTERSECTIONS OF a-ALGEBRAS

We may therefore assume that a(x, y) = g( y) for some g E ~° and hence
by condition b) that for every s > 0 there is a finite dimensional subspace £*
of ~ b and a uniformly bounded sequence _> 1 such that for each n,

for all y and

Fix ~, ~ and (hn).
Let d be the dimension of R and choose xl, ..., xd in X so that the eva-

luations at these points form a basis of the dual of the linear space 
Let ( f 1, ... , ,fd) be the dual basis of ~, i. e. _ for i, j E ~ 1, ... , d ~.

d d

Then hn( . , Y) = Y) f i for every y, i. e. hn = ( f 1 ° 03C0x) where
i-1 i-1

y) = hn(xi, y). The sequence hin), being uniformly bounded, has a
03C3(~(P), 1(P))-limit point hi~ which may be chosen to be { ~, X } ~ ~-

d

measurable. Then for every g E E(hng) = i ° has
d 

i= 1

03A3 E(hi~(fi  03C0x)g) = E(h~g) as limit point where

n 
Passing in (4) to the limit we conclude ~h~ - En=1 (a) ~1 ~ ~. Such

00

an h ~ exists for every G > 0. This implies (a) = com-

pleting the proof.

II. Proof of the equivalence a) => c) ~> c~.

II.1. We need the following lemma which is concerned with the ques-
tion of when P~-separability is hereditary. The proof is an adaption of
well known arguments.

LEMMA. - Let cg* be a sub-03C3-algebra of the P-separable 6-algebra 1.
Then for every generating system 0 of b1 the following are equivalent

i ) ~* is P’‘-separable.

Vol. XIX, n° 1-1983. 4



96 H. V. WEIZSACKER

ii ) For every there is some k in (~ ~+ such that

(iii ) For every and every k in (~ @ ~~)b satisfying k = E~ ° (g*( g),
(5) holds.

Proof - 1. i) => iii). Assume ~~ to be P~-separable. Let .Yf* c ~,~
be countably generated such that * = * mod Px for P1-almost all x.
Let k E (ff @ ~,~)b satisfy k = E~ ° ~*( g). Then

for all FE, i. e.

whenever H E ~* . Since is countably generated there is a pl-nullset N
such that k(x, .) = for all x ~ N. Because of ~* _ mod Pf,
k then satisfies the same relation for instead of 

2. iÜ) => ii ) is obvious.

3. ii ) ==> i ). First note that the assertion in ii ) easily carries over

to all by a straightforward monotone class argument. Let ~1
be countably generated such that ~f = mod Px for all x ~ N 1 where N 1
is a pl-nullset. Fix a countable subset { hm of b which generates b
as a monotone class. For each m choose some km in (iF Q ~*)~ satisfying
k,~(x, . ) = for pI-almost all x. Then all functions km(x, ), (m E x ~ X)
are measurable with respect to a countably generated sub-03C3-algebra *

since every product 6-algebra is the union of its countably generated
sub-product-o’-algebras. Then = for all and x ~ N2
where N2 is another P 1-nullset. If x ~ N1 ~ N2 it follows that EpX (g) = 
for all g E ~i and hence all Thus ~* _ ~* mod Px since eg* c ~1.

11.2. If 1 is P-separable the equivalence of c) and d) is now obvious
in view of the preceding lemma.

Proof of a) ~ c). - Suppose that each n is P-separable. Fix g E 0.
Let kn be such that kn = E~ ° ~r=(g) and define k by kn- Then according
to the lemma kn(x, .) = and hence by decreasing martingale conver-

Annales de l’lnstitut Henri Poincaré-Section B



97TAKING SUPREMA AND COUNTABLE INTERSECTIONS OF ð-ALGEBRAS

gence k(x, . ) = for P~-almost all x. According to (3) therefore for

every h E (~ (x) the two conditions

and

are equivalent. -

oo

Now if a) holds, i. e. = F Q ~~ mod P, there is some h
n= 1

in (~ Q+ with property (6). Then h satisfies (7) which implies c).
If conversely c) holds there is some h E (~ Q satisfying (7) and

00

hence (6). Thus k = En=1 
° 

(g) coincides P.-a. e. with a Q9 measu-
00

rable function, i. e. = 
° 

( g). Since this is true for every
g condition a) follows via the same argument as in the beginning ofl.2.

III. Proof of d) => e).

III .1. If e) holds then ~~ is P ~ -separable since then ~~ _ ~ ~, S~ ~
mod P~ for P-almost all co.

III.2. Suppose that P is trivial on and that ~ _ ~~ mod P~
for P-almost all 03C9 where Jf = 03C3{Hm} is a countably generated sub-a-

algebra of G~. Then P is also trivial on i. e. P is concentrated on the atom

A = f~l Hm n f~l of Yf. Then 1 for P-almost
m:P(Hm)= I 

"’ 
0

all CD. These P~ then are trivial on ~f and hence P-almost all of them also
trivial on ~~, i. e. e) holds. This completes the proof of the theorem.

5. RELATED QUESTIONS

In this section we first give references to some situations in which the

problem under consideration is closely related to the question whether
x

~r = mod P for some specified 6-algebras.
~ 

n= 1 -

Vol. XIX, n° 1-1983.



98 H. V. WEIZSACKER

5.1. Natural filtrations.

In [9] ] a right continuous process o is constructed such that

~ 1 V mod P where

Clearly this is a problem of our type with _ ~ 1. It is known
° n

that (Xt) cannot be Markovian. Here is a short proof of this fact using our
theorem: Consider ~’ = 6 ~ X1 ~. Since ~’ c we have

On the other hand by the Markov property the conditional distributions P~ 1

and P ~ coincide on ~o + . By the equivalence a) => d ) of the theorem we
thus have also

5.2. Global Markov property of lattice fields.

On Q = ~ 4, 1 ~ ~d consider the 6-fields generated by the projec-
tions 03C9 ~ 03C9| where A c Let Gu be the convex set of all Gibbs states
associated with a translation invariant nearest neighbour potential U. It
is still unknown whether every extreme point P of U has the global Markov
property : for a hyperplane Ao in 7~d the field on one of the two corresponding
halfspaces is independent of the behaviour on the other halspace, given 
The answer is « yes », if and only if .

The « only if » can be seen by the implication e) => a) of our theorem.
We would like to point out that sometimes the global Markov property
for non-extreme states can be deduced from the corresponding statement
for extreme states, namely if conditionally on the field is extreme (like
in the 2-dimensional Ising model). For examples without the global M. p.
of locally Markov field with trivial tail a-algebra see [14 ] and [7], p. 59.
Concrete positive results are contained in [1 ], [2], [3].

Annales de l’Institut Henri Poincaré-Section B



99TAKING SUPREMA AND COUNTABLE INTERSECTIONS OF (7-ALGEBRAS

5.3. Generalized Markov fields.

For an open set ~ let ~ (~) be the a-algebra on the space ~ _ ~’
of one dimensional distributions which is generated by ( ( . , ~p ~ : ~p E ~,
supp 03C6 c ó/i }. For arbitrary C let (C) be the a-algebra n { 
C c ~C, ~ open }. It is shown in [~] that ~ (( - oo, 0 ]) 
mod P if P is the tight probability on ~’ induced by the canonical Gaus-
sian cylindrical measure of the Sobolev Hilbert space This example
shows that some natural definitions of Markov property do not coincide.
It corrects some earlier statements concerning generalized Markov fields
( [5 ], Theorems 1 and 8, [10], Lemma 2).

5.4. The innovation problem.

Let (Xt)tET be a realvalued process with T satisfying

Xt+ ~ - Xt = a(t, X) + ~t t (discrete time)
’ 

or d X = a(t, X)dt + dWt (continuous time)

where for each t the noise ( « innovation » ) 11t resp. dWt is independent
of cgt = a { XS : s _ t} and the functional X) is t-measurable.
Even if the tail held ~ == ~ ~~ is trivial the answer may be negative

tET

to the innovation problem i. e. whether X is measurable with respect to the
6-field ~ generated by the innovation process. In the case T = Z this is
shown e. g. by a straightforward modification of our introductory example
(even with a(t, X) = 0). For T = (0, oo) the problem is much harder, a

corresponding counterexample has been given in [13 ]. In both cases X
is V t-measurable for each t. Similar examples had been studied already
in [12 ] for finite state space Markov chains and for diffusions with T = L~
in [4 ], p. 72.

5.5. The symmetric problem.

We have not been able to find satisfactory analoga to our theorem
for the question whether (n ~n) V (n cgn) = n (~n V cgn) mod P where 
also is a decreasing sequence. Even for finite state space S there are ergodic
stationary processes for which both the future and past tailfields are trivial
but the two-sided tailfield is equal to the full a-algebra modulo nullsets [11 ].
This cannot happen for (even nonstationary) Markov fields on S~ [15].

5.6. An example of the phenomenon studied in this paper which in
some sense is uniform but lives on an infinite measure space is given in [8 ].

Vol. XIX, n° 1-1983.
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