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Additive and superadditive local theorems

R. ÉMILION

Universite Paris VI, Laboratoire de Probability U. A., C. N. R. S. n° 224,
4, place Jussieu, Tour 56, 3e étage. 75230 Paris Cedex 05

Ann. Inst. Henri Poincaré,

Vol. 22, n° 1, 1986, p. 19 -36. Probabilités et Statistiques

ABSTRACT. - We first prove a local ergodic superadditive theorem
for positive contractions on Li (*). As an application of this result we
obtain the local additive theorem for nonpositive L1-contractions. Finally
we prove the local ergodic theorem for n-parameter semigroups of non-
positive L 1-contractions.

These two last results give an answer to questions raised by U. Krengel
( [16 ], p. 169).

RESUME. - Nous prouvons d’abord un théorème suradditif pour des

contractions positives de Li (*). Nous appliquons ce résultat pour obtenir
un théorème additif pour des contractions non positives de Li. Nous prou-
vons enfin le théorème ergodique local pour des semi-groupes à n para-
metres de contractions non positives de Li.

Ces deux derniers résultats répondent à des questions posées par U. Kren-
gel ( [16 ], p. 169). 

________

(*) Part of a conference given at Marseille, 6 July 1982, « Journees de theorie ergodique ».
C. I. R. M. Luminy.

(*) Partie d’une conference donnee a Marseille, 6 juillet 1982, « Journees de theorie
ergodique ». C. I. R. M. Luminy.
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20 R. EMILION

1 . INTRODUCTION AND NOTATIONS

Let Li denote the usual space of equivalence classes of complex-valued
integrable functions on a a-finite measure space (X, s3°, ,u).
Lt denotes the set of positive real-valued functions of Li.

1.1 CONTINUOUS SEMIGROUPS.

Let n >_ 1 be a fixed integer and let T = (T~ )tE~~ + _ be a strongly
continuous semigroup of linear contractions on Li (Note that we have
not assumed the continuity of T at 0).
T is said positive if Tt(Li ) c Li for all t, and T is said markovian (resp.

submarkovian) if Tt is positive and Ttfd  = fd  for all f~L1 (resp. Tt
is a positive contraction on L 1 ). ~ "
1.2 THE INITIALLY CONSERVATIVE AND DISSIPATIVE PARTS.

If n = 1 and T is submarkovian, then let f > 0 and

The set C is independent of the choice of f and is called the initially
conservative part of T. D = XBC is called the initially dissipative part of T.

Li(C, ~ , = Li(C) is invariant under T and the restriction of T to
Li(C) can be completed continuously at t = 0. We therefore can define

The results mentioned above are due to M. Akcoglu-R. V. Chacon [1 ].
They also hold for n >_ 1 (M. Akcoglu-A. Del Junco [2 ]) and for bounded

semigroups (the author [9 ]).

1.3 ADDITIVE AND SUPERADDITIVE PROCESSES.

If n = 1 and if T is as in Section 1.1, then a family { Ft, t > 0 }, Ft 
is called an additive process with respect to T if

The process will be said bounded if sup ~Ft~  + otpl t

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



21SUPERADDITIVE LOCAL THEOREMS

If T is submarkovian, then a family {Ft, t > 0}, Ft E Li, is called a

positive superadditive process with respect to T if

1.4 THE RESULTS of this paper concern local ergodic convergence of

processes, i. e. the a. e. convergence of Ftlt as t -~ 0 + through any countable
set.

In Section 2 we will study the case of superadditive processes for positive
operators and in Section 3 the case of additive processes for nonpositive
operators.
The last Section contains the results for n-parameter semigroups and

also a continuous version of an inequality of A. Brunel [5 ].

2. SUPERADDITIVE LOCAL THEOREMS

We assume here that n = 1 and that T is submarkovian.

2.1 THEOREM. (M. Akcoglu, U. Krengel [3], Section 4).
If T is markovian and if { 0 } is a positive superadditive process

with respect to T, then

In the submarkovian case the existence of the limit a. e. on X may fail

as one can see with the trivial example Tt = 0.
In [10 ], B. Hachem and the author have shown that a supplementary

condition yields the a. e. convergence on X.

In fact the a. e. convergence always holds on the conservative part:

2.2 THEOREM (D. Feyel [l2 ]).
If T is submarkovian and > 0 ~ is a positive superadditive

process with respect to T, then

D. Feyel’s theorem more generally holds for superabelian processes
and therefore for superadditive processes, by the use of a tauberian theorem.

In this Section we will show that a refinement of our previous argu-

Vol. 22, n° 1-1986.



22 R. EMILION

ments in [1 D ] yields the a. e. convergence on C, without using the Tau-
berian Theory.
The following theorem, the main result of this Section, slightly improves

the two theorems mentioned above, since the superadditivity is only assumed
on the set of positive dyadic rationals B, where B = ~ k2 - ‘, k, i = 1, 2, 3... }.
We also recall that a positive operator on L 1 can be extended to M + (X) _ ~ f :
X -~ ~ + ~ ~ + oo ~ ~ f measurable }.

2.3 THEOREM.

Let F = (Ft)t>o be a family such that

Then we have

(2. 7) lim exists a. e. on X if Ft E Li and if T is markovian

( 2 . 8 ) exists a. e. on C if F t E M + and i T is markovian

(2.9) lim Ft exists a. e. on C if Ft E M + and ifT submarkovian .( ) 

Note that condition 2.6 and the condition of positivity can be dropped :

2.10 COROLLARY.

Then the conclusion of Theorem 2 .1 holds if the limits are taken as t --~ 0 +

through B.
(Apply the Theorem 2 . 3 to F = (Ft )t> o where Ft = sup FS).

i

SEB

2.11 COROLLARY.

Let (Ft )tEB be a family such that
. Ft: X -~ f~ ~ ~ - oo, + is a measurable function for all t E B

. Ft- E L i for all t E B

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques



23SUPERADDITIVE LOCAL THEOREMS

Then the conclusion of Theorem 2. 3 holds if the limits are taken as t ~ 0 
+

through B.

Proof of Corollary 2 .11. We have  Ft- + TtFs and thus there
exists an additive process such that Ht for all t E B. (Ft + Ht)

then verifies the hypothesis of Corollary 2.10. Since lim Ht t exists and since

(Ft + H - r) Ht, lim Ft exists a. e. This is a standard argument ([3]
[12]). 

Proof of Theorem 2 . 3.
1. Proof of 2.7. This is a refinement of the arguments of M. Akcoglu-

U. Krengel ( [3 ], Section 4) together with a combinatorial lemma (lemma 1
in the paper of M. Akcoglu-L. Sucheston [4 ]). 

"

By (2. 6) we can define Fs ds as the strong limit of the Riemann sums.
Let 0  t  to, t and t E B : t = k2 - i to = l2 - i.
By (2. 5) the sequence (F~2 - is superadditive with respect to the posi-

tive operator T2 - ~. Hence the combinatorial lemma yields

As i -~ + oo we obtain

for all t, to E B 0  t  to.
Since T is markovian 2.12 implies

Again since T is markovian (2. 5) and (2.13) imply

By (2 . 5), (2 .14) and lemma 4 .1 in [3 ] we can find a positive additive

process, say such that G _ F for all t E B and 
Gt 

d - .process, say such that t _ t for all t~B and t 
= ’Y

Since (Gt) is continuous (y  + oo ) and F is increasing (2 . 6), we have

Vol. 22, n° 1-1986.



24 R. EMILION

Gt  Ft for all t > 0. Moreover, since (Gt)t>o is a positive additive process

such that - Gt  + oo, lim Gt exists and is finite a. e. on X. Therefore,
t 

if we write Ft == (Ft - Gt) + Gt, we see that it suffices to prove (2 . 7) when
y=0. y 

In this case, let E > 0 and to E B such that - Ftod   6.

..

The strong continuity of T at t > 0 shows that strong 2014 lim Hu = Ht
for any t > 0. 

Moreover, (2.12) shows that 0 for all t e B, 0  ~  to, and hence

0 for all  to. Since H~ is an additive process, this implies
that 0 for all t > 0.

Since F is increasing (2.6) and since H is continuous, (2.12) shows

that 1 - t to)Ft ~ H, for all t, 0  t  to.

~  + oo and Ht is a positive additive

process, so lim - Ht exists a. e. on X.

Consequently

8 being arbitrary, when y = 0.

Proof of2 8. 2014 We use here an argument of D. Feyel [l2 ] to prove that 2. 7

implies 2.8. Let such that h  lim Ft a. e. on a measurable
set Y c C.. ~ ~ 

t-+O + t

The process Gt = inf Ft, verifies (2 . 4), (2 . 5), (2 . 6) and Gt E Li ;

by (2 . 7) lim t-1Gt exists a. e. on X.

But, by the local theorem of U. Krengel we have

Ft 1 Ft ~

Hence h  lim and lim - - exists a. e. on C.
- 

r~ t t-io+ t t

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



25SUPERADDITIVE LOCAL THEOREMS

Proof of 2 . 9. - For details see R. Emilion-B. Hachem [10 ].
As in the proof of 2. 8, it suffices to prove 2. 9 when Ft E X

and X = X ~ ~ a~ ~. Let ~u be the measure on X defined = ,u and
= 1. Then, iffE L1(X) and if f = f ( x,

defines a markovian semigroup on L1(X, ~u).
As in [1 Q ], let us define a family + 00 } such that

and

where

(Note that 13t can be infinite). 

/*In ([70] ] 4.1 and 4 . 2) it is proved that /3t + S ? (3t + ~S + 
for all t, seB. "

Therefore the process Fr = Ft1X + > 0, verifies

Hence, by (2. 8) lim Ft t exists a. e. on C = }, the initially conser-
vative part of T. 

- 

i-o + t 

Fi
Since Ft = 1XFt and since C c X, we have lim Ft exists a. e. on C. This

completes the proof. 
’ 

t--> 0 + t

Remarks.

. Since strong-lim Tt|L1(C) = R0 is a conditionnal expectation operator
( [3 ], p. 208), there is no loss in generality in assuming that Ro = I [12 ].

. (2. 7) and (2. 8) improve the superadditive theorem in [3 ] and [12 ],
since the condition 2.5 only holds on B.

. (2 . 9) improve the superadditive theorem in [10 ]. Also note that the
extra condition given in [70] ] is not necessary for the a. e. convergence
to hold on X : take Tt = 0 and Ft = tf, fE L i .

. As in [10 ] we deduce the result for the submarkovian case from the
markovian one.

Vol. 22, n° 1-1986.



26 R. EMILION

2 .14 Lp- SUPERADDITIVE PROCESSES ( 1  p  op ),
The Lp-local additive theorems were proved by using the Li-ones

(R. Sato [21 ], M. Lin [18]). The same holds for superadditive processes
(the author [8 ]). Hence, since the present results on Li improve those of [10],
they also improve the Lp-results of [8 ]. We omit the statements.

3. AN ADDITIVE LOCAL THEOREM

In this section we prove the following result (Theorem 3. 3), the assump-
tion of continuity of a nonpositive-L1-contractions semigroup at 0 can
be dropped in the local ergodic theorems of C. Kipnis, Y. Kubokawa ([14]
[17 ]) and D. Feyel [11 ]. This generalizes the positive operators case

(M. A. Akcoglu, R. V. Chacon, U. Krengel [11 ] [3 ]) and answer a question
raised by U. Krengel ( [16 ], p. 169).

3. 1 THE SEMIGROUP.

We consider a semigroup T = of Li-contractions which are
not necessarily positive. It is assumed that T is strongly measurable and
thus strongly continuous at every t > 0, but T need not be continuous at 0.
T = will denote the modulus semigroup of T (see C. Kipnis [14 ],
p. 372). It is important to mention that we consider here complex Li-spaces.

3 . 2 THE RESULTS OF THIS SECTION.

Theorem 3 . 3 generalizes the local additive theorem of D. Feyel [77] ]
which holds if the resolvent of T exists (hence T must be continuous at
every t > 0) and is proper, that is X = C the initially conservative part
of T. These conditions imply that T is continuous at 0 ([1] ] or [9 ]) and
thus T is necessarily continuous at 0 (see 3.6 below). Our result can be
proved by using D. Feyel’s theorem [77] but as [77] depends on a rather
nontrivial dilation theorem, we prove the additive theorem for semigroups
verifying 3.1 as an interesting application of the local superadditive theo-
rem for positive contractions ( [12 ] or 2 . 9). We also prove that we may
assume that To exists and that To = I the identity operator. This generalizes
the positive operator case [2 ] and the proof depends on a decomposition
of the space due to M. A. Akcoglu, A. Brunel [D ]. The last part of this section
contains some generalizations of the results obtained in the positive ope-
rators case and also a very simple proof of a local theorem of R. Sato [19 ].

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



27SUPERADDITIVE LOCAL THEOREMS

3 . 3 THEOREM.

Let T be as in Section 3 .1 and let F = (Ft)t> o be a locally bounded additive
F

process with respect to T. Then lim t exists a. e. on X." 

Proof. - We divide the proof into four parts.

Part I. - The continuity of the modulus semigroup.

If h : f~ + - ~ 0 ~ --~ R is any right-continuous function then for any a e R
the set ~ t > 0 > a ~ is a countable union of intervals, hence h is mea-
surable. Now, for any f E L 1, f being real-valued, the map t -~ Ttf is
right-continuous at every point t > 0 (C. Kipnis [l4 ], p. 374). Since T
maps real valued functions to real functions, the above argument shows

that t - is measurable for any real-valued g E and moreover

the right-continuity implies that the set { Tth t > 0 } is separable. Conse-
quently the map t -~ Tt f is measurable (see [7], 111.6.11) for any real-
valued f and thus for any complex-valued fe Li, and since the Tt are
contractions, t ~ Tt is strongly continuous at every point t > 0 (see the
proof of VII. 1.3 in [7 ], p. 616).

Therefore we may define the initially conservative and dissipative parts

of and Ð=XBê, where fo = 10 sfds for any fixed

f E Li , f> 0 a. e. (Akcoglu, Chacon [1 ]).
Since 1 DTt = 0 and since Tt, we can consider the restrictions of T
and T to L1(C) and we put

and

Also, note that the additivity relation = Ft + TtFS together with
sup ~ ~ Ft/t [ ~ 1  imply that F is continuous, Ft E L1(C) and Ft = RoFt.
ot 1

Part II. - The reduction to the superadditive case.

The inequality |Ft| + I and lemma 4.1 in [3 ] imply
that there exists an additive positive process with respect to T such that
sup ( ~ (  + oo and such that Ht for any dyadic rational t > 0
Ot 1

and hence for any t > 0 because F and H are continuous. By the main result

Vol. 22, n° 1-1986.



28 R. EMILION

of [3 ] we know that lim Htlt exists a. e. and is finite, and since H is increasing
we also have q-sup Htlt  + oo a. e. and thus  + oo a. e.

ot 1 ot 1

(q-sup means that the sup is taken over Q +).
Admit for a moment the following point : (E).
(E) Let fn be a sequence of complex valued functions which are measu-

rable with respect to a measure space (X, ~, ,u). If sup  + oo a. e.
n

then there exists a complex-valued ~-measurable function such that
lim inf ~ fn - f ~ = 0 a. e.
n- + 00

Then we will prove the theorem 3. 3 as follows :

Let tn be a sequence of rational numbers such that tn > 0 and tn -~ 0 + .
Let = and apply (E) to fn in order to obtain a function f Then

fe L1(C) since ! f| ~ lim Ht/t. Suppose that Ro f = f

The process N / F, - TsJ ds |)t > o 

is subadditive with respect to T.

Let be a bounded additive process with respect to T such that

exists a. e. on C and hence a. e. on X. Therefore lim T ds exists
a. e. on X.  n 

s.f

It then suffices to apply the local theorem of Kipnis, Kubokawa to obtain
3.3:

Hence lim = Ro f - f a. e. on x.+

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



29SUPERADDITIVE LOCAL THEOREMS

Part III. - The identification of the limit operator.

To prove that Ro f = f and more generally that we may assume that
Ro = I, we use a decomposition of the space due to Akcoglu, Brunel [IO ].

Clearly Ro is conservative because Ro fo = fo and, after a change of
measure, Ro is a conditional expectation operator with respect to a sub-a-
algebra of C, say B ( [13 ], p. 208).

Let Fo c C be the union of the supports of all Ro-invariant functions
of LJC), and let Ao = CBI-’o.

Hence = 1êh and 10394oh = 0. Furthermore

implies that = 0. Since Ro = strong-lim Ts|L1(), it follows

that Ro = strong-lim (1/t) t Ts|L1()ds and consequently = 0 if
f-~0+ o

Recalling that Ft E and that = Ro ( [14 ]) we then get
Ft = RoFt = Ro(lroFt) = ERo(ElroFt) where e E and I e =1 a. e.

(by [0]).
Thus sFt = is £3-measurable and by (E), ~f is also B-measu-

rable, that is 8f= Ro(ef) = ~R0(103930f) = Consequently f = Ro fa. e.
on ro. But the relation Ft = ~0(~103930Ft) shows that Ft E L 1 (ho), Hence
f E Li(Fo) and since ro is invariant we have f = Ro f a. e.

Part IV. - A selection lemma.

Finally it remains to prove (E) in part II. This is independent of the other
arguments.

If the fn are real-valued it suffices to take f = lim inf fn.
n

If the fn are complex-valued this is less obvious.
We identify the complex field with ~2.
First suppose that __ 1 a. e.

Let Ak(x) denote the closure of the set ~ fn(x) ~ Let A(x) 
k>_0

so that A(x) is a compact set (since we have assumed that 1 a. e.).

Vol. 22, n° 1-1986.



30 R. EMILION

Let r(x) = lim inf Re ( fn(x)) = inf {Re (z) z E A(x) }. where Re (z) denotes
the real part of the complex number z. Then r is B-measurable.

Let s(x) = inf { y ( (r(x), y) E A(x) ~ and finally let f(x) = (r(x), s(x)). We
will show that s is E3-measurable.

Let a Let = r(x) if a and = 2 if Imfn(x)  a.

Since r is measurable, so is gn, and since r(x)  2 a. e. we have

which shows that s is W-measurable.

f is then ~-measurable and f(x) e implies that there exists a sub-
sequence nj(x) ~ oo such f (x), that is lim inf f| =0 a. e.

(E) is then proved whenever [ fn [ __ 1 a. e. If we only have sup  + o0
n

a. e. then let gn = fn/( 1 + [ fn [ ). The above argument shows that there
exists a £3-measurable function g such that for a. e. x there exists a sequence
n~(x) such that converges to g{x). This implies that ~~~~)(~)! I
converges to gM ! [ and thus !~,(~)! [ converges to ~)!/(! - ! g(x) [ )
(note that sup [ fn [  + oo a. e. implies that [ g [ ~ 1 a. e.).

n

Finally converges to + ( [g{x) [ /(1 - [ g(x) [ )) = f (x). So,
f is ~-measurable and verifies lim inf = f == 0 a. e.

n

This completes the proof of (E) and therefore of theorem 3. 3.
The following points generalize the results obtained in the positive

operators case. (3 . 8) was proved by R. Sato [7P] ] in the particular case
M== 1, we give here a very simple proof of this result.

~ . ~ THEOREM.

Let T he as in Section 3.1. Then

3.5 T is strongly continuous at every point t > 0.
3.6 T [L1~~~ is strongly continuous at o.
3 . 7 T is continuous at 0 if and only if  is continuous at D.
3 . 8 Ifthere exists M > 0 such that ~Ttf~~ ~ M~f~~ for any f~L1~L~,

. and 0  t  1, then T is continuous at 0.
j

Proof. 3 . 5 is proved above and 3 . 7 implies 3 . 6 as T is continuous

at 0. The « only if » part of 3 . 7 is known { [14 ] [17 ]). Conversely suppose
that T is continuous at 0.

Then, consider the vector space H == { f E L1|[ lim Tt f exists } which is

closed and also weakly closed. For any f E the inequality [ Z’f.f [ _ tI f I

Annales de l’lnstitut Henri Poincaré - Probabilites et Statistiques



31SUPERADDITIVE LOCAL THEOREMS

implies that there exists f * E L1 and a sequence tn -~ 0+ such that

f* = w-lim Ttn f Since Ttn f E H we have f * E H. This implies that f E H
tn~~+ 

n n

as Ttf* = Tt f for any t > 0. Hence H = L1 (See also the proof of lemma 1
in [19 ]).
To prove 3 . 8 it suffices to show that lA E H for any A such that J1(A)  + oo.

This is easy: M implies that there exists f * ~L1 and tn ~ 0 +
such that f * = w-lim Ttn1A; it then suffices to complete the proof as above."

Remark. If ,u is finite we can replace in 3 . 8 ~ ~ ~ ~ ~ by ( ~ (1  p  oo)
(see the proof of 2 .1 in [9 ]).

4. AN n-PARAMETER LOCAL ERGODIC THEOREM

In this last Section we prove an inequality for n-parameter semigroups
(Theorem 4.3 below) in order to obtain the following local ergodic theo-
rem. We consider complex L1 spaces.

4 . 1 THEOREM.

Let T = ~ Tt E (I~+)n ~ be a strongly continuous n-parameter semigroup
of L1-nonpositive contractions. Then, for any f~L1

This theorem answers a question also raised by U. Krengel ( [16 ], p. 169)
and it improves previous local theorems obtained in the following cases
for semigroups which are continuous at zero:

. T positive and n = 1 (U. Krengel [15 ])

. T positive and n >_ 1 (T. R. Terrell [21 ])

. T nonpositive and n = 1 (C. Kipnis [14 ], Y. Kubokawa [17 ])

. T nonpositive, n >_ 1 and Tt L~-contraction (T. R. Terrell [21 ])

. T nonpositive, n > 1 and Tt L1-isometry (S. A. McGrath [33 ]).
Our result is proved by using the above basic theorem of U. Krengel

stated in dimension one for positive operators.

4.2 REDUCTION OF THE DIMENSION.

To reduce the dimension we first show that Dunford, Schwartz [7] and
C. Kipnis [14] ] techniques yield the following continuous version of an
inequality of A. Brunel [5 ].

Vol. 22, n° 1-1986. 2



32 R. EMILION

4 . 3 THEOREM,

Let T = ~ T~ti,...,tn~, t~ > 0, i = 1, ..., n ~ be a strongly continuous semi-
groups of positive L1-contractions. Then there exists a one-parameter strongly
continuous semigroup of positive L1-contractions, say (Ut)t>o, such that

where r = r2-k ifn is such that 2k-1  n _ 2k, and cn is a constant which
is independent of T and f

Moreover, fT is continuous at zero, then so is U and Uo = |T0 ( the linear
modulus of To.
The continuous case also implies the discrete one :

4.4 COROLLARY.

Let Tl, ..., Tn be commuting L 1 -contractions, then there exists two
positive L1-contractions U and A such that

where r is the integer part + 2 if 2k-1  n _ 2k, and dn is a constant
which is independent of the Ti and off.

Remarks.

. 4.3 yields several simplifications in the proofs of Dunford, Schwartz.

. 4 . 4 is a weaker form of A. Brunel’s inequality [5 ] but it yields the dis-
crete pointwise theorems of [5 ].

Proof of Theorem 4 . 3. We follow the technique introduced by Dunford,
Schwartz ([7], p. 700-702) and C. Kipnis { [l4 ], p. 372-374). Hence we omit
the details.

We may assume that n = 2k, kE {1,2, 3... }.
Let h : (f~ + - ~ 0 ~ )n -~ (l~. We will say that h is right-continuous if

lim = hu, where v = (vi, ...,vn) ~ 0+ means that vi ~ 0+ for

i = 1, ..., n. For such an h, it is easily seen that for any and any
bounded interval I of (l~n, the set ~ t E ( fI~ + - ~ 0 ~ )"/h(t ) > a ~ n I is a

countable union of intervals of Hence h is measurable.

Now, the linear modulus of the contraction Tu (see Chacon,
Krengel [6 ]) then P = (Pu) is a sub-semigroup (i. e. and

Annales de l’Institut Henri Poincare - Probabilités et Statistiques



33SUPERADDITIVE LOCAL THEOREMS

strong-lim Pu+v = Pu. Hence, as in the proof of 3 . 3, we see that P is strongly

measurable.

Therefore if p = - and ax(t) =1(R+ -{0}} x 2(03C02t)-3/2e-x2/4t for any x > 0
and t we can define the p-dimensional sub-semigroup of Dunford,
Schwartz : 

S(x1,...,xp)f = ~0 ... ~0 03B1x1(t1)03B1x1(t2)...03B1xp(tn-1)03B1xp(tn)P(t1,...,tn)fdt1...dtn
for any fe Li.

It is then easily seen that S = (S(xi,...,xp)) is strongly continuous at every
point x = 0 (see e. g. [21 ], p. 271).

Hence, since n = 2~, Dunford, Schwartz inductive construction yields
a one-dimensional strongly continuous sub-semigroup of positive contrac-
tions, say (At)t>o, such that

for any f e L1 and r > 0.
Finally, following C. Kipnis we put

denote any finite partition of [0, t] such that 0  t 1  ...  tn = t.

is a semigroup which verifies At  Dt and the proof of 3 . 3

shows that is strongly continuous at every t > 0.
Of course, we have the first assertion of the Theorem 4. 3 :

It T is strongly continuous at zero, then strong-lim TJ _ ~ To ! by the
u -~ o +

inequality - ~ I Tu I I To I together with the fact that Tu is

a contraction for all u.

It is then easily seen that the reduced sub-semigroups are continuous
at zero (see e. g. [21 ], p. 271) :

And finally, the one-dimensional semigroup also verifies

This completes the proof of Theorem 4. 3.
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Proofof Corollary 4.4. Let P(il, ..., in) = I Tii ... Tnn I. Then, we have
+ j 1, ..., id + ja ) __ P( i 1, ... , id)PU1, ... , ja ), and thus Dunford-

Schwartz technique shows that there exists a continuous sub-semigroup S
such that

(where (Ut ) is the one-dimensional strongly continuous semigroup obtained
in the proof of 4.3)

where rn is the integer part of r + 1.
1_

It then suffices to put U = Ui and Af = to obtain the Corol-

lary 4 . 4. °

4.5 PROOF OF THE LOCAL ERGODIC THEOREM 4 . 1.

s /’s

Let f~L1, and for any s > 0 let Msf = s-n o ... 
For any s > 0, MS f verifies the conclusion of the Theorem 4 .1 (see

U. Krengel [7~] ] and T. R. Terrell [21 ]).
If we note that Mp f = = we then obtain

(by U. Krengel’s theorem [ I S ])
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It then follows that

Since T is continuous at zero, we have

Thus lim To f a. e.

Note that the proof is given for complex Li spaces.
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