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Semimartingales and measure preserving flows

Philip PROTTER
Mathematics and Statistics Departments, Purdue University,

West Lafayette, Indiana, 47907
Technical Report ~ 85-3

Ann. Inst. Henri Poincaré,

Vol. 22, n° 2, 1986, p. 127-14 7. Probabilités et Statistiques

ABSTRACT. 2014 We study semimartingales within an ergodic theory frame-
work as pioneered by J. de Sam Lazaro and P. A. Meyer. We show that the
local characteristics of a helix semimartingale have a form roughly analo-
gous to those of a process with stationary and independent increments.

RESUME. - On étudie des semimartingales dans un cadre de la théorie
ergodique d’après J. de Sam Lazaro et P. A. Meyer. On montre que les
caractéristiques locales d’une semimartingale-helice possèdent une forme
a peu près analogue a ceux des processus a accroissements independents et
stationnaires.

§1 INTRODUCTION

The fundamental paper on combining helices with stochastic processes
on filtered probability spaces by J. de Sam Lazaro and P. A. Meyer [1 D ]
was published in 1975, during the prehistory of semimartingales. In this
article we use techniques developed to study semimartingales in a Markov
process framework (i. e., [3 ]) to develop systematically a part of the program
begun in [1 D ]. This is the content of paragraph three, the chief result being
Corollary (3.2).

Part of this work was supported by NSF Grant # MCS-831073.
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128 P. PROTTER

Processes with stationary and independent increments are semimartin-

gales and they have local characteristics of a very special form, due to the
Lévy-Khintchine formula (c. f. [8, p. 92 ]). With the notation of paragraph
five of this article the local characteristics of such a semimartingale are of
the form :

In particular the local characteristics are non-random and moreover r
factors with one factor being Lebesgue measure. It is, perhaps, interesting
to see how much of this characterization is retained by a semimartingale
with stationary, but not necessarily independent, increments. Since these
semimartingales can be realized as helices one can use Palm measure tech-
niques and we obtain in paragraph five (i. e., (5.10)) a factorization of
the local characteristics roughly analogous to (1.1). Paragraph four deve-
lops the necessary theory about random measures used in paragraph five.

§ 2. PRELIMINARIES

We use in this article the basic framework and notation developed in the
fundamental work of J. de Sam Lazaro and P. A. Meyer [ 1 D ] ; for semi-
martingales our notation is that of Meyer (cf. [12 ] [4 or [11 ]).
We suppose given a probability space (Q, P) and a group 

of measure-preserving transformations from Q to Q. (The group action is
etes = et + S). Moreover we assume there exists a sub a-field dO of d such that
A is the P-completion of dO and such that (t, ~ 03B8t(03C9) is B (R) (x) A0/A0 -
measurable.

For a given a-field F ~ A such that ~ F for t  0, we can
define a filtration by setting

Thus ~ ~ + t = This is an increasing family of a-fields and we set

F-~ = 9 = This filtration F = (Ft)t~R is a filtration

under the flow Given a 6-field iF° inducing a filtration under 
we can set iF to be the completion of iF° in ~. In this case ~ t = ~ t + ;
that is, the filtration is right continuous (c. f. [10, p. 4 ]). We will always
make the assumption that F~ = A and F-~ contains all P-null sets, for

any filtration being considered.
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129SEMIMARTINGALES AND FLOWS

A helix will mean a real-valued process with right continuous

paths, Zt E ~ , Zo = 0, and such that

holds identically for all This is also called a perfect helix. A crude
helix is an Ft-adapted process with right continuous paths with

Zo = 0 and such that (2.1) holds a. s. for all s, t, h~R. The exceptional
sets can depend on the choice of s, t and h. The following fundamental
result is due to J. de Sam Lazaro and P. A. Meyer, and uses the « perfec-
tion » techniques developed by John Walsh :

(2 . 2) THEOREM. - If Z is a crude helix then there exists a (per~ fect) helix,
Z, which is indistinguishable from Z.

Since a process with stationary increments might naturally be interpreted
as a crude helix, Theorem (2. 2) is especially useful.

(2.3) DEFINITION. - A right continuous process will be called a

semimartingale if: Zt E ~t, t E Zo = 0 a. s.; and if is a semimar-

tingale in the traditional sense (that is, there exist a local martingale (Mt)t&#x3E; o
and a process (At)t&#x3E;o with paths of finite variation on compacts such that
ZI = Mt + At, t &#x3E;-_ 0 (cf. 14 ] or [11 ])).
We will be interested here in helices that are semimartingales. These

can be thought of, essentially, as semimartingales with stationary increments.
Processes with stationary and independent increments are well known to be
semimartingales and can easily be put into this framework (cf. [10, p. 30-32 ]).
A time homogenous Markov process with semigroup o and admitting
an invariant measure (i. e., aPt = a) can also be put into the helix framework
(cf. [10, p. 32 ]). A helix semimartingale defined within a Markov framework
would correspond to the « additive semimartingales » studied in [3 ] or the

generalized additive functionals studied in [13 ]. Other examples can be
obtained from Lazaro’s characterization of the space of square-integrable
helix martingales under certain hypotheses [ l~ ].

Finally, one might wonder whether or not all « nice » helices are semi-
martingales. This is not the case : Let ~ , (~t)t &#x3E; o, (ot)t &#x3E;_ o, 
be the Dynkin representation of standard Brownian motion (cf. [2]).
One can fix P to be P° and extend B to t in ( - oo, 0 ] in the usual way. Then

is a helix but it is not a semimartingale (cf. [3, p. 195]).
It will be convenient to use the idea of the « big originally proposed
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130 P. PROTTER

by M. Sharpe for the study of Markov processes. We adapt it slightly
here for our situation :

for any process Z, and h, s, t E f~. We then have the obvious

(2 . 4) PROPOSITION. - An adapted, right continuous process Z with Zo = 0
is a helix if and only if ZS) = ZS holds, all t, s, 
We write 0398hZ to denote the process (0398h(Zt - Z0))t~0.
We establish here some notation (Y is always adapted and right conti-

nuous) :
EX - ~ Y : (Yt)t &#x3E; o is a semimartingale )
~p == { Y : is a special semimartingale }
~" - ~ Y : (Yt)t &#x3E; o a. s. has paths of finite variation on finite intervals )
~ = {Y: (Yt)t&#x3E;o has paths of locally integrable variation )
~f - ~ Y : is a local martingale }
EP - ~ Y : o is predictably measurable ) .
We let L(Y) denote the (linear) space of predictable, Y-integrable processes

for a semimartingale Y, and for H E L(Y), we will let both H . Yt and 

t &#x3E;-- 0, denote the stochastic integral of H with respect to Y. If Y we

let Y denote its dual predictable projection (also known as the « compen-
sation » of Y), and if Y E ~, then Y~ will denote its continuous martingale
part, [Y, Y ] will denote its quadratic variation process, and if [Y, Y e ~,
then [Y, Y ] will be sometimes denoted ( Y, Y ), to conform with the nota-
tion of [10 ]. 

°

(2 . 5) COMMENT. Helices are defined for all t E R, whereas objects such
as semimartingales, dual projections, etc. are defined only for t &#x3E;_ 0. When
we come across a process Y defined for t &#x3E; 0 and satisfying the shift iden-
tity (2.1), we can extend the process to ( - oo, 0] ] by defining Y- = Yo o 8 _ t
(for t &#x3E; 0). The process Y now defined for all t E R will continue to justify
(2.1) and this will be a bona fide helix.

§ 3 . SEMIMARTINGALES AND FLOWS

In this paragraph we will consider semimartingales and how they behave
with respect to the « flow » operator Our results are analogous to

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



131SEMIMARTINGALES AND FLOWS

those of paragraph three of [3 ]. Our main result is Theorem (3 .1), while
our most useful result is perhaps Corollary (3 . 2).

(3 .1) THEOREM. Let Y E ~, s &#x3E;_ 0, and Yt = 0 if t _ 0. Then :

i) OSY E L. If Y E Lp(respectively L, L, G n ), then OSY E Lp
(respectively ~, ’Y~, ~, ~ n ’Y~).

ii) If Y E ~p has canonical decomposition Y - M + A, then
= OSM + OSA is the canonical decomposition of ~SY.

iii) If Y E ~, then OSY = 
°’

iv) We have (OSY)~ _ 
v) We have = OS( [Y, Y ]).
vi) If H E L(Y) then OSH E and (~SH) . (~SY) = Y).
vii) If Y is square-integrable, then ~ = Y, Y ).

The proof of Theorem (3.1) follows the proof of Lemma (3.7). Our next
corollary contains some results already well known : for example part (vii),
that ( M, M ) is a helix if M is a square-integrable martingale helix, is proved
by Lazaro and Meyer in (10, p. 54].

(3.2) COROLLARY. Let Y be a helix. Then :

i) There exist helices M E L, A E , such that Y = M + A.

ii) If Y E ~p with canonical decomposition Y = M + A, then both M
and A are helices.

iii ) If Y E ~, then the dual predictable projection, Y, is a helix.
iv) The continuous local ~martingale part of Y, Y~, is a helix.
v) Zhe process [Y, Y j is a helix.

vi ) If HE L(Y) is homogeneous (i. e., Hto 85 = all t, s) then there
exists a version of the stochastic integral H. Y which is a helix.

vii) If Y E L is square integrahle then  Y, Y ) is also a helix.

Proof. We first note that Y being a helix means Yt ~ 0 for all t  0

in general, whereas in Theorem (3.1) we assumed Yt = 0 all t  0. This

does not really pose a problem, however, since Yo = 0 for all helices Y
which implies = Yt for all s &#x3E; 0, which is the crucial consequence
of the assumption that Yt = 0, t  0 used in Theorem (3 .1).
We begin the proof of ii).

Let Y E and let Y = M + A be its canonical decomposition. For s &#x3E; 0,
4SY = 0398sM + 0398sA is the canonical decomposition of 0398sY by Theorem(3.1).
Moreover since Y is a helix,

Vol. 22, n° 2-1986.



132 P. PROTTER

therefore = Yt = O~M + 0sA; by the uniqueness of the canonical
decomposition we have ~SM = M and OSA = A. Since this holds for
all s &#x3E; 0, we conclude M and A are helices by Proposition (2. 4). The proofs of
iii), iv), v) and vi) are analogous. Statement vii) is an immediate consequence
of iii) and v), since  Y, Y) is the dual predictable projection of [Y, Y ].

It remains to prove i). Let be a helix and let = Yt - Yt -,
which is defined up to an evanescent set. We set

Then J is a helix in ~’ as is easily checked, and hence Y’ = Y - J is a helix
in ~. Since ~Y’ ~  1, we know that Ye ~p. Letting Y’ = M’ + A’
be its canonical decomposition, by ii ) we have that M’ and A’ are both
helices. Thus Y = M’ + {A’ + J} is a decomposition of Y into

helices. D
We now present five lemmas which lead to the proof of Theorem (3.1).

(3. 3) LEMMA. Let X~b F~, and let "X = E{X|Ft}, t ~ 0, taking
the right continuous version ; and we set = 0 for t _- 0. Then for all
t &#x3E;-_ s &#x3E;_ 0, we have = 

Proof Let t &#x3E;-_ s &#x3E;-_ 0 and Then

E { 

= E { }, since 0s is measure preserving
= E ~ WX }, since S

= = 

since Wo03B8s E Moreover since Ft = random variables of the
form W E b generate b and the result follows. D

(3 . 4) LEMMA. Let Y E ~f be such that the jump process is bounded by
a constant c. Let Yt = 0, t  0. Then OSY E ~, every s &#x3E;- 0.

Proo, f: - Let Tn = inf { t : |Yt| &#x3E; n}, and T;, = inf { t : &#x3E; n }.
Then T~ = inf ~ t &#x3E; 0 : &#x3E; n ~ = s + hence

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Since (Y~ ,, T n)t &#x3E; o is a martingale bounded by n + c, using the notation of
Lemma (3 . 3) we have : 

.

Therefore = ° a. s. if t &#x3E; s, and = 0 if t  s. There-

fore is a martingale, each n. Since lim T~ = oo a. s., we

conclude that 0

(3.5) LEMMA. - Let Yn be a sequence of elements of Z such that

Yn+1 - Ym~2+. nonnegative and increasing. Then Yn + 1 - Y ~2+. More-
over if Y = sup Yn and Y’ - sup Yn, then Y E 2+ if and only if Y’ E 2+,

in which case Y = Y’ a. s.

Proof - This lemma is taken from [3 ]. The first statement is clear.
For the second, note that the dual predictable projection Z of a process

is characterized by its predictability and the property that

E { = E { ZT} for every finite stopping time T, and then apply the
monotone convergence theorem. Q

(3 . 6) LEMMA. Let Y with Yt = 0 ,for t -_ 0. Let Y be its dual predic-
table projection. Then 0398sY ~ 2 and aSY = OSY for every s &#x3E;_ 0.

Proof - It suffices to prove this when Y is positive and increasing
(i. e., Y ~ 2+). Let Y" == Y A n = min (Y, n). Then 0394Yn = _ n, and
of course Y E .9p. Let Y" = Mn + An be its canonical decomposition
(Mn E L, An E 2+ and predictable). Then An = Yn, and Y = sup Yn. More-

n

over it is well known (e. g. [4 ]) that implies that 2n.

Then Lemma (3.4) implies 0398sMn E L. Since Y" == Mn + Yn, also

and since we must have that 0398sYn is the
dual predictable projection of Osyn.

Since Y E Y is predictable, it is clear that OSY E Y and predictable as
well. This implies (e. g., [8, p. 17 ]). But = sup 

and 0sY = sup Therefore OSY is the dual predictable projection
of OSY by Lemma (3.5). 0

(3.7) LEMMA. - If Y E if and Yt = 0 for t _ 0, then and

Proof - Let AY, and let Nn = where

Vol. 22, n° 2-1986.



134 P. PROTTER

jn is the dual predictable projection of In. Then and

I A(Y - N 1 ) ~  2. Therefore by Lemma (3 . 4) we have 0s(Y - 
Lemma (3. 5) implies E ~f. Therefore QSY E J~f.
Now that we know ~SY E =~, we may consider its continuous local

martingale part (0sY)’. Set 1 f o(eey)u I &#x3E; l,,n~. Then

0398sJn = Kn, and as we have seen from Lemma (3.6), Kn = 0J" = 
Recall Nn = In, and we conclude that lim (0sNn)t = 

with convergence in probability. Since lim N? = Yt - Yct (in probability),
and since 0s is measure preserving, we have that = 0s(YC)t a. s.

when t  s. Since 0 for t  s, the proof is com-

plete. a

Proof of Theorem (3 .1). Statement iii) is the content of Lemma (3. 6)
and thus already established.

If Y E ’Y~ (respectively n ’~), then O~Y E ’~’ (respectively n ~).
But Lemma (3 . 7) showed that implies OSY E ~ and statements
i) and ii) follow easily.
Concerning iv), let Y = M + A with M E ~f, be a decomposition. Then

Y~ = M~, and similarly and thus iv) follows from
Lemma (3.7).
Concerning v), fix a t and let I(n, t) _ ~ 0 = to  t 1  ...  tn = t ~

be a subdivision of [0, t] ] such that lim mesh I{n, t) = 0. Let 

= Yo + (Y~; - It is well known that li m = [Y, Y]t for

I= 1

any semimartingale Y, with convergence in probability. Thus

[Y, Y ], (~, = P - lim 

and since = 0 for u  s, the above limit is t a. s.,

and v) follows.
Statement vii) follows from v) and iii), since ( Y, Y ~ is the dual predic-

table projection for and square integrable.
It remains to prove vi). Let Y He L(Y). Set D = ~ ~ &#x3E; 1 }

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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&#x3E; 1 ~, and Y: = Yo Let Y" = Y - Y’. Then

Y" E ~Y" ~  1. Let Y" = M + A be the canonical
decomposition of Y". The assumption that HeL(Y) implies that the
Stieltjes integral process H . Y’ and H . A exist, and also that the stochastic
integral H . M exists (cf. [8, p. 54]). Hence H2 . [M, M ] E f2 +. Since the
following are pathwise Stieltjes integrals it is simple to verify :

where v) is used in the last equality above. By i) the first two processes
are in ~, and the third is in ~. Therefore is integrable with respect
to and 8sM. Hence 8sH E 
Now let H be simple predictable : that is, let H be of the form

n

Then H . Yt = - and a simple computation shows
i= 1

that 
- ,, , . y, , - , ,, , - . y,

for Y e EX and H simple predictable. Let Jf be the linear space of all bounded,
predictable processes for which vi) holds. Let (Hn) be a sequence of elements
of ~f which converge uniformly to a bounded process H. Let Zt = H . Yt.
Then P - lim (Hn . Y)t = Zt, each t &#x3E; o. Therefore lim Y)t = a. s.,

as well. Moreover OsHn converges in probability to and hence

lim 0sY = 0,H . Since Hn E H, we have

~f contains all processes of the form (3 . 8), hence a monotone class argument
shows that ~f is exactly the set of all bounded, predictable processes.
For general HeL(Y), set Hn = n}. Then P - lim (H" . Y)t = Zt

Vol. 22, n° 2-1986.



136 P. PROTTER

for t &#x3E; 0. Since vi) holds for each Hn, it will hold for general H e L(Y)
by passing to the limit (with convergence in probability). D
We next prove a Radon-Nikodyn type theorem (Theorem (3.11) for

helices. These results are already known (cf. [7], [10, p. 45 or [9 ]) with
a different method of proof. This result is analogous to Motoo’s theorem
for Markov processes.

{3 . 9) LEMMA. - Let A be an increasing helix and suppose dAt « dt a. s.
/*t

Then there exists a r. v.03C6 e F0 such that At = ds a: s., where 03C6s = 8S.

Proof. Let Zt = lim Then by Lebesgue’s derivation
SEo

-t
theorem we have = for all t &#x3E; 0. That A is a helix implies

Z is homogeneous : Zt = Zo o 03B8t. Zo is in F0 by the right continuity of the
filtration. Taking cp = Zo completes the proof. ~

(3 . 10) THEOREM. - Let A, A’ e ’~ both be helices, continuous, and suppose
-t

that for e ~o such that ~p . A = 0 {(cp . A)r = where ~ps = ~p ~ os)’ 

0

we have ~p . A’ = 0. T hen there exi,st.s ~ e ,3io such that A’ - t/r . A.

Proof Without loss of generality (cf. (2. 5)), we take our processes to
be defined only on Q x [0, oJ). Let A +, A - (respectively A’ +, A’ - ) be the
positive and negative variation processes of A (respectively A’), and set
C = A + + A - ; C’ - A’ + + A’ - . All of these processes are crude helices
as is easily verified; we take their perfect helix versions. Next set

Ft = t + Ct + Ct, and let it = inf {s &#x3E; 0 : FS &#x3E; t}, the right continuous
inverse of F. Define A t ; = At - - Ait, and

Bt = 8~t. Then all the time changed processes are still « helices » under 9
(that is, they satisfy (2.1)). (For the proofs of these claims we refer the reader
to Lazaro and Meyer [10, p. 48 ]). The process « dt by Lebesgue’s
change of time lemma (cf., e. g. [2, p. 206 ]), hence by Lemma (3 . 9) we have

t /*f

+t = hs ds = 03B803C4s ds for a r. v. h+ e = We obtain ana-

logous results for A -, A’ +, A’ - which yield, respectively, random variables
-t t

h -, h’ +, h’ - . Time changing back yields A+t = 0 H+s dFS, dFs,

etc. The hypotheses on A and A - imply that {h+ = h-} ~ {h’+ = h’-}
Annales de l’lnstitut Henri Poincare - Probabilités et Statistiques



137SEMIMARTINGALES AND FLOWS

up to a set of p-measure 0 where p is the measure on R+ x Q given

by ,u(H) = 

Therefore we set

and we obtain

~J U

The following theorem covers the discontinuous case (again, we are taking
our process to be defined only on Q x [0, oJ)).

(3 .11) THEOREM. - Let A, A’ e ’~ be helices such that for homogeneous
t /*t

process dAs = 0 implies dAs = 0 a. s. Then there exists a homo-

geneous process 03C8s such that A’t = t0 03C8s dAs.

Proof. 2014 Set At - Ao - / AAS, and define A’c analogously.
Then A" and A’~ verify the hypotheses of Theorem (3.10) whence

t

A’c = 003B303C3dAcs. Let D = { AA = 0 }. Then 1D is a homogeneous process

and A = 0. Hence by hypothesis 1D . A’ = 0 a. s. as well. Hence up
to an evanescent set { AA’ 7~ 0 ~ ~ ~l AA = 0 ~ . Next set

AA’
~s - lD~

and the result follows. D.

COMMENT. In theorems (3 .10) and (3.11) the only time we used that (ot)
are rneasure preserving was when we used perfect versions of the helices.
Thus these results essentially hold in any such « shift » framework.

Vol. 22, n° 2-1986.
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§ 4. RANDOM MEASURES AND FLOWS

In this paragraph G will denote a Borel subset of a compact metric
space (i. e., a Lusin space), and % will denote its Borel a-field. We let ~
denote the a-field where ~ (resp. C~) is the smallest
03C3-field on Q containing the adapted processes whose paths are left
(resp. right) continuous with compact support. We state the following well
known lemma without proof (cf. [6 ]). Let (E, 8) denote a measurable space
and suppose ~ is an arbitrary family of positive (7-finite measures on it.

(4.1) LEMMA . Let { f(B) B E ~ ~ be a fami ly of functions in ~‘’ such that
~, f (Bn), m - a. e., for every and every sequence of

pairwise disjoint sets in ~. Then there exists a positive kernel K(a, dy) from
(E, ~) into (G, qj) such that K(., B) = f (B) m - a.e., for all and

. dt, dy) is a positive kernel from (Q, ~ ) into (f~ x G, W 0 ~) (where
~ denotes the Borel sets of for any measurable 

we set : .

whenever this integral makes sense.

(4 . 2) DEFINITION. - r as above is called a random measure if W * r is

(~-measurable (i. e., optional) whenever W, positive is (~ O %-measurable
on Q. We denote

r: r a random measure and such that there exists a 

measurable partition Dn of Q such that 1 Dn * r E 2,
every n ~

f!lJ n predictably measurable for }.
Note that dt, ~ 0 ~) = defines a random measure if Y E ~+
by taking G = { 0 }. Random measures play many roles analogous to those
of processes in 9 + . In particular for r E we restrict x G

by taking .

n(~ ; dt, dy) = r(c~ ; dt, dy) In x ~a,~~ X G

as the restriction of r. We then know that there exists a random measure,
denoted r, on Q x !R x G, which is the « dual predictable projection »

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



139SEMIMARTINGALES AND FLOWS

of A, the restriction of r. We refer the reader to Jacod [8 ] for all facts about
random measures.

We next extend the concept of the « big shift » to Q. We define

and denotes W(cv, 0, y ) ].

A simple computation yields :

(4 . 5) PROPOSITION. - Let W be positive and either t, y ) = 0 for
t _ 0, or t, y) is a helix for fixed y. Then * h)t = * 

(4 . 6) THEOREM. - Let I-’ E and let I-’ be the dual predictable projection
of the restriction of r to 03A9 x R + x G. Then 4sr E and is a version

of the dual predictable projection of Osr.

Proof - Let be a -measurable partition of  such that.
1Dn * r ~ 2 for every n. Set Do = Q x ( - oo, s) x G, and

for n &#x3E;_ 1. Then is a Ø’-measurable partition of Q. Moreover

1D’0 * (0sr) = 0. For n &#x3E; 1, = r) by Proposition (4 5),
and these processes belong to f2 by Theorem (3.1). Therefore 0398s0393 E 
and we let denote the dual predictable projection of its restriction to
Q x x G, which we now know exists. Analogously we know 0398s
is in  n Then n &#x3E; 1 and B ~ G, we have :

with the last equality by Proposition (4 . 5). On the other hand :

with the second equality by Proposition (4 . 5) and the last equality by Theo-
rem (3.1). The result now follows. a , ,. 

.
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140 P. PROTTER

(4. 7) DEFINITION. - A random measure r is called integer valued if it
has the form :

where A is an optional set and where Z is a G-valued optional process.
Here Ea denotes the Dirac point-mass measure at a point a. We will write
~6 for those random measures in which are integer valued.

(4.8) DEFINITION. A random measure h will be called additive if

i) I-’( . , ~ 0 ~ x G) = 0 a. s.
ii) (~Sh) (., dt, dy ) = r( . , dt, dy ) for all s E a. s.

In what follows, since we will be dealing with dual projections and
increasing processes and hence be interested only in +, we will freely
abuse the word « helix » and apply it to processes defined on [0, oo) and
satisfying (2.1). These can easily be extended to be true helices as discussed
in Comment (2. 5).

(4.9) THEOREM. Let I~’ be an integer valued measure in ~~ such that
there exists a ~-measurable partition (Dn)n &#x3E; 1 of Q x x G where

Cn = 1Dn * I-’ ~2 is a helix for each n. Then there exists an increasing,
predictable helix F and a positive kernel t ; dy) from (Q x C~)
into (G, ~) such that

is a version of h ~a of the dual predictable projection of the restriction
of 0393 to (03A9 x R+ x G).

Proof - Let an = E dCns }  oo. Choose bn such that

03A3 anbn  ~. Let H = Then is a helix, and we let F

n&#x3E;_ 1 n&#x3E; 1

denote its dual predictable projection, which is also a helix by Corollary (3.2).
For B E ~, the process Y(n, B) _ r E ~; call its dual predictable

projection Y(n, B). Since Y(n, B)t « dCt « dHt, we have dY(n, B)t « dFt a. s.
By Theorem (3 . i i) there exists a homogeneous process fen, B) such that
Y(n, B) = fen, B) . F a. s.
We next apply Lemma (4 .1) where (E, {SZ x ~ +, (~) and

x For every pairwise sequence (Bq) we have
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Y(n, UBq) = I Y(n, and hence Y(n, UBq) = Bq) up to an

q q

evanescent set. Therefore a. e., each 

Therefore by Lemma (4 .1) there exists a positive kernel t ; dy ) such
that Kn( . , B) = B) m - a. e., all and B ~ G. We now set :

(4.10) = dy .

Since r = I r" is. then the dual predictable projection of r, and since
v-~the same F appears in (4.10) for each n, if we set K = K", we obtain

the desired result. n &#x3E; 1

§ 5 . LOCAL CHARACTERISTICS
OF HELIX SEMIMARTINGALES

Let Y = be an m-dimensional semimartingale. Let

and J = Then Y - Yo = J is an m-dimensional special semi-

martingale. We let Y - Yo - J = M + B be its canonical decomposition.
The jump measure r of Y is defined by :

Note that r is an additive random measure on Q x R x G if Y is a helix.

(Once again, we abuse the word « helix » to apply to processes defined on
Q x !R+ but extendable to Q x fl~ ; cf. comment (2 . 5)).

(5 . 2) DEFINITION. - The local characteristics of Y consist of the triplet
(B,C,r) defined as follows :

f) B = 
ii) C = where ]
iii) r is the dual predictable projection of the integervalued random

measure of (5.1).
See Jacod [8, p. 88-97 ] for all facts concerning local characteristics.
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(5 . 3) THEOREM . Let Y be an m-dimensional semimartingale.
i) If Y is a helix or if Yt = 0 for t  0, then is a version

of the local characteristics of any s &#x3E;_ 0.

ii) If Y is a helix then Band C are helices and I-’ is additive.

Proo~ f: i) The jump measure of OSY is easily seen to be and OSJ
is the corresponding J-process for The result then follows from Theo-

rem (3 .1 ) and Theorem (4 . f ). ii) h is additive because Y is a helix. There-
fore r is additive as a consequence of Theorem (4.9). Band C are helices
by Corollary (3. 2). D

(5 . 4) THEOREM. Let Y be a helix and an m-dimensional semimartingale.
Then there exists :

i) a predictable, increasing « helix » F on x Q;
it) a homogeneous process b = m ~ 

.

iii) a homogeneous process c = with values in the set of all

symmetric nonnegative matrices;
iv) a positive kernel t ; dy) from (Q x fl~ +, (~) into ~’~) such

that the local characteristics of Y are given by :

where b. F denotes 

COMMENTS. Although F is only defined on R+ x Q one can extend F
to a helix on R x Q (cf. Comment (2. 5)). The fact that c can take its values
in the space of all nonnegative symmetric matrices is part of the established
theory of local characteristics (cf. [8 ]). Also, it is known that one can take

the kernel K such that K( ~ 0 ~ ) = 0 and min (1,! y 2 ) K ( dy )  oo .

Proof. By Theorem (5. 3) we know that B and C are helices and that
F and hence h are additive random measures, where h is as defined in (5 .1) :
the jump measure of Y. Let Do=Qx x ~ 0 ~, and for n &#x3E; 1 set
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Then r hence r E ~~. Theorem (4. 9) then guarantees the existence
of F’ and K’ such that

Next set

where t0 |dBs I denotes the total variation process. Then dFt « dF/ and

hence r admits a second factorization with a new kernel K such that:

dt, dy) = t ; dy).

Since dBt « dFt and « by Theorem (3.11) there exist homoge-
neous processes b and c such that B = b . F and C = c . F. D
We next record a result which is fundamental to the theory of helices.

It is due to Mecke, and we present it here as interpreted by Lazaro and
Meyer [10] (cf. also Geman and Horowitz [5]). Let Z be an increasing
helix such that Z~ = + oo and Z _ ~ - - oo for all w. Such a helix we
will call a total helix.

(5.5) THEOREM. - Let Z be a total helix. Then there exists a a-finite
measure  on (03A9, F0) such that one lnts, all positire f F0 ~ B-measurable,

Moreover, ,u is by

We refer the reader to [10, p. 43 ] for the relatively simple proof. The measure
,u is called the Palm measure of the helix Z. Next we combine Theorem (5 . 4)
with Theorem (5 . 5) to obtain :

(5 . 6) LEMMA. - Let Y be a helix semimartingale with local characteris-
tics B, C, and F. Then there exist ~°-measur~able random variables band c,
a positive kernel t ; dy) and a ~-finite measure ~c on (S~, such that

for any F ~ B-positive H :
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iii) for any ~ ~+-measurable positive W :

~ W(cc’, t, y’)r(a’ ; dt, t, t ~ 

Proof. By Theorem (5 . 4) we know that there exists an increasing

« helix » on S2 x R+ such that Bt(co) = t0 s(03C9)1[0,t](s)ds(03C9). Without

loss of generality we can extend F to be a helix on S2 (cf. (2. 5)), and
we can then replace fi with Ft = fi, + t, so that F is a total helix. We can
then write

and hence by Theorem (5.5):

The proof for C is analogefus.
As for iii), take W to be positive and F ~ L O B+ measurable. Then

t, y)I-‘(co ; dt, dy)= P(dcv) t, t ; 

and letting t, y) = t, y) and t ; dy) = K(8 _ tcc~, t ; d y)
we have by Lemma (5 . 6) :

The following lemma is quite simple and we omit the proof (See [10, p. 42]
for an analogous lemma.)

(5. 7) LEMMA. Let ~, be a positive measure on Q x (1~ x G such that one
has for every positive W which is ~ ° ~ ~ O ~ measurable : .’
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for any u E I~. If the measure i on S2 x G, z(A) _ ~,(Ax ]o, 1 ]) is a-finite,
then one has dt, dy) = dy) x dt.
We now come to our principal result which describes the local characte-
ristics of a helix semimartingale in a way roughly analogous to Jacod’s
description of the local characteristics of a process with stationary and
independent increments [8, p. 92 j .

(5 . 8) THEOREM. - Let Y be a helix semimartingale with local characte-
ristics B, C and F. Then there exist F0-measurable random variables band c,
a positive kernel from into (G, ), and a a-finite measure ~u
on (Q, such that for any positive’ ff ~ B positive H :

(5.9) COMMENT. One can summarize Theorem (5.8) in shorthand by
saying that under the bijections t) == t) and y) = y),
the local characteristics of a helix semimartingale are given by :

where the a-finite measure J1 can be taken to be the same in all three equa-

tions, and where « ds » denotes Lebesgue measure.

Proof - The statements i) and ii) are the same as in Lemma (5.6) and
hence already proven. Consider then iii) : define the measure A by

. 

on Q x [o, oo ) x G, and
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~~

on Q x ( - 00,0] x G. Since r is additive and 03B8u are automorphisms
under P we have

We next define a new measure £ by

Thus ~, is the image of A under the bijection (co, t, y) --~ y). Then

(5.11) implies

Lemma (5.7) then implies

The equalities (5.12) and (5.13) together imply

which means there exists a kernel dy) such that
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