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ABSTRACT. - The relationships among the energy functional, the

balayage operators, and capacities for a Markov process and the same
objects for its q-subprocesses and u-transforms are investigated. Special
emphasis is on the behavior of these objects as q and u vary.
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322 R. K. GETOOR AND J. STEFFENS

1. INTRODUCTION

In this paper we investigate the relationships between the energy functio-
nal (defined in section 3) and the balayage operators and apply the results
to the discussion of capacities and cocapacities for Markov processes as
defined in [16]. In particular we are interested in the study of q-capacities
(i. e. the capacities associated with the q-subprocess) and their properties
as a function of q.
The notion of balayage of excessive funtions or excessive measures is

due to Hunt [17]. He showed that the balayage of an excessive function f
on a Borel set B is given by PBfwhere PB is the hitting operator associated
with the underlying Markov process. Perhaps because of this, for many
years most attention was devoted to the study of the potential theoretical
properties of excessive functions and their generalizations. Recently there
has been a renewed interest in the potential theory of excessive measures.
See e. g. [7], [8], and [13]. In particular in [8], Fitzsimmons and Maison-
neuve gave a direct probabilistic expression for Hunt’s balayage operation
RB m of an excessive measure m on a set B in terms of the stationary
process (Y, Qm). See (2. 7).
The energy functional was introduced explicitly by Meyer in [20], but

may be traced back to Hunt as well who used similar techniques in
discussing balayage. See sections 7 and 8 of [17]. Our attention was drawn
to the energy functional in connection with capacities by a remark of C.
Dellacherie on our previous paper [16]. It has already been pointed out in
a paper [23] by the second author that using the energy functional yields
in connection with the balayage operations a method of defining capacities
which is more general than that in [16]. Moreover, it provides a useful
tool in the study of the properties of q-capacities.
We assume given a Borel right process X with semigroup (Pt). If m is

an excessive measure and u an excessive function L (m, u) denotes the
energy functional evaluated at m and u. S ee (3.2) and (3.9) for the

definition of L. The reason L is called the energy functional is explained
in ( 3 . 15) . It is shown in ( 3 . 16) that L ( m, PB u) = L ( RB m, u); that is, L ( . , . )
makes PB and RB dual objects. Now fix an excessive measure m and let
C (B) and C (B) be the "capacity" and "cocapacity" of B as defined in
[16]. One main observation (3.22) is that

where the subscript i denotes the invariant part. This implies that in case
B is transient (resp. cotransient) as defined in [16], one obtains r(B) = C (B)
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323ENERGY FUNCTIONAL

[resp. r (B) = C (B)]. Actually r turns out [see (7.12)] to be the proper
extension (at least for dissipative m) of C and C as an outer capacity.
More generally, considering the q-subprocess associated with X (for

there are defined PB, RB, Cq, and CR and as well Lq and rq. For
we obtain the following relations for these objects (the numbers

refer to the places where the formulas appear in the later sections):

where (Vq) denotes the resolvent of X killed when hitting B;

Since for q > 0 any Borel set B is both transient and cotransient for the
q-subprocess one has that Cq (B) = (B) = Cq (B) for q > o. The behavior
of rq (B) as a function of q is described in section 8. For r = 0 there is a
formula similar to (7 . 4) above for q > 0

However, it seems to be difficult to deduce the behavior of rq (B) as q
approaches zero from either (7.4) or (7.9). Nevertheless it is shown in

(8.1) and (8.3) that q ~ T q ( B) is increasing and continuous on ]o, oo [,
and that if {RB m) PB 1 is finite for some q > 0, then rq (B) decreases to
r(B) = C (B) = C (B) as q 1 0. This generalizes a result of the first author
[11] in the context of weak duality. (Un)fortunately we have not yet found
a proof for this last result purely in terms of the energy functional and
related notions. In fact, our current proof uses exit systems as in [8].
More generally than explained so far and more generally than in [16],

we define capacity and cocapacity of a set B with respect to an excessive
measure m and an excessive function u (instead of 1) satisfying
m (u = oo) = 0 by means of the Kuznetsov measure Qm associated with m,
u, and the semigroup ( Pt) . S ee ( 2 . 3) and (5.1). However, is the same
as the Kuznetsov measure associated with um, 1, and the semigroup

h-transform of by the excessive function h = u [see (4.1)].
Therefore the study of these capacities for a general u may be reduced to
the case u =1 for the u-transform of X. The capacities studied by Hunt in
section 19 of [17] and the conditional capacities discussed in section 7 of
[11] are special cases of these general capacities. Associated with the



324 R. K. GETOOR AND J. STEFFENS

h-transform are the corresponding energy functional and balayage opera-
tors. Their properties are studied in sections 4 and 5. These results not

only are of interest in themselves but also provide the tools for reducing
the case of a general u to the case u = I .

NOTATION. - Our notation is for the most part standard. However, the

following special notation will be used without comment. The symbol
"=" means "is defined to be". If (H, ~f) is a measurable space, 
means that h is an extended real valued measurable function on H, while

(resp. means h >_ 0 (resp. bounded) in addition. denotes
the o-algebra of universally measurable sets over ~P. If (G, ~) is another
measurable space, means that p is a measurable map from

to (G, G). If  is a measure on H and f~H we use both (f) and

 ~., f ~ to denote whenever the integral exists, and sometimes just

for On the other hand f ~ or f. p always denotes the measure
f (x) The infimum (resp. supremum) of the empty set is + ao (resp.
- oo). As usual ~ denotes the reals and Q the rationals.

2. PRELIMINARIES

Let E be a Borel subset of a compact metric space and 8 the a-algebra
of Borel subsets of E. Let A be a point not in E and let EA = E U ~ ~ ~
where A is adjoined to E as an isolated point. Let ~e = ~ (~ U ~ 0 ~). A
function f on E is automatically extended to EA by f (0) = 0.

Let Q be the set of all right continuous trajectories w : f~+ ~ EA with A
as cemetery. As usual and

We assume given a Borel right process
in the sense of [9]. Let (Pt)t>o and 

denote the transition semigroup and resolvent of X respectively. Here
?o=I and we write U = Uo. be the lifetime of X

and P~ denote unit mass at [A] - the trajectory that is identically equal
to 0. - 

,

Denote by W the set of all maps w : R - EA such that there exists an
open interval ]a ( w), (3 {w)[ on which w is E-valued and right continuous
and with w(t)=A for t not in ]cx(w), ~i (w)[. Note that ]cx(w), [i {w)[ empty
corresponds to w = [~] the constant map identically equal to A. Observe
that [A] is used in two senses: [A] E Q (resp. [A] E W) is the constant map
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325ENERGY FUNCTIONAL

defined for t >_ 0 (resp. (In [16] we used two distinct points a and b
for the pre-birth and death points, but here it seems more convenient to
take a= b = A as in [8].) Let Yt (w) = w (t) be the coordinate maps on W
and 8t w (s) = w (s + t) for t Note that at is used for the shift in W and
in Q. Let and ~° _ ~ (Ys; s _ t). Set a ([0]) _ + oo and
[i ( [0]) _ - 00. As usual we sometimes write Y (t) for Y~ and X ( t) for X t.
The spaces Q and W are related by the mappings ’Yt: W -~ Q defined

for t e R as follows:

Clearly if If and if 

Note that yr is measurable for each and 

One easily checks the following useful identities:

A family E (~ ~ of a-finite measures on (E,8) is an entrance

rule (for X or Pt) provided vs vt as s i t. An entrance law v at to,
an entrance rule such that for tto and 

for t°  s  t. An entrance law at zero is simply called an entrance law. An
excessive measure is an entrance rule that is independent of t; that is, a
a-finite measure m such that m Pt ~ m as t 1 0. Arguments similar to those
in the proof of Lemma 5 . 1 in [5] show that t -~ Vt (B) is Borel measurable
for each 

Let be an entrance rule and u an excessive function with

oo) = 0 for each Then it follows from a theorem of Kuznetsov

[18] (see also [19] or [14]) that there exists a unique measure Q~ on (W, ~°)
not charging [A] such that if t 1  ...  tn,

and Q~ is a-finite. We shall call Q~ the Kuznetsov measure corresponding
to v, u, and (Pt). Strictly speaking the theorem in [18] would require u to
be Borel measurable, but the extension to arbitrary excessive u poses no

difficulty. See remark (3.14) of [14]. ( Another approach is to observe
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that v= 03BDtdt is a countable sum of finite measures, and so one may use
(6 . 11) of [15] to find a Borel excessive function v _ u such that = 0

for Lebesgue almost all t, and hence for every t since vt P~ Then

(2. 3) is unchanged if u is replaced by v and so one may define Qy to be

If m is an excessive measure and u is an excessive function with

m (u = oo ) = 0 we write Qm for Q~ where vt = m for each t. In this case Qt‘m
is invariant in the sense that at (Q~‘m) = Qm. Finally we write simply Qm or
Q,, when u = l. It is immediate from the uniqueness assertion that the
Kuznetsov measure Q’~‘m corresponding to m, u, and (Pt) is the same as the
Kuznetsov measure corresponding to um, 1, and the h-transform

semigroup See section 4 for a discussion of h-transforms. Moreover

Y =(Yt) under Qm is strong Markov with semigroup See [21] or

[19].
Let Exc denote the class of excessive measures and E the class of

excessive functions for X. We recall two decompositions of an excessive
measure from [8]. See also [16]. Firstly each m E Exc has a unique decompo-
sition where ~ is invariant (i. e. for each s >_ o) and

m p is purely excessive [i. e. f~p ~ with implies as

t - oo]. If u~E with m (u = oo) = o, then Qum = + and by checking
finite dimensional distributions one finds 

This is proved in [8] when u == 1. We let Inv and Pur denote the classes of
invariant and purely excessive measures respectively.

Secondly each m E Exc may be written uniquely as where

me is conservative and md is dissipative. Recall that m E Exc of the form
m = J.l U - u is necessarily a-finite - is called a potential, and that m E Exc
is dissipative provided there exists a sequence of potentials U) increasing
to m while m is conservative provided U~m implies pU =0. If g>0
with m (g)  oo, then by (4 . 3) of [8~(, m~ (resp. md) is the restriction of m to
{ Ug= ~} (resp. (Ug ~ }). An elementary proof of these facts is given
in [1]. We let Pot, Dis, and Con denote the class of potentials, dissipative,
and conservative excessive measures respectively. It is shown in [8] that
Pot c Pur c Dis and Con c Inv.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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The decomposition has an analogue for excessive functions.
Given uEE, let lim Pr u. Then for each t > 0 if

It follows that ui is supermedian (i. e. Let

ui~lim Ptui be the excessive regularization of ui. One readily checks

that one has for each t and
r>o

lim Ptu = Ui. Next define up (x) = u (x) - ui (x) if Ui (x)  oo, up (x) = oo if
t -~ 00

ui (x) = oo. Again up is supermedian and we set up --_ lim Pr up. One verifies

that on { inf Pr u  ~} one has
r>o

We call ui (resp. up) the invariant (resp. purely excessive) part of u. We
say that u is invariant if u = ui on {u  ~} which is equivalent to Pt u = u
for each t on ~ u  oo }, and that u is purely excessive if u = up on ~ u  oo ~
which is equivalent to Pt u ~ 0 as t -~ 00 If m E Exc we say
that u is m-invariant (resp. m-purely escessive) if u = ui (resp. u = up) a. e.

m which is equivalent to Pt u = u for each t (resp. Pt u ~ 0 as
t -~ ooj a. e. m on ~ u  oo ~. By checking finite dimensional distributions
one has the following dual of ( 2 . 4) f or m E Exc and u E E with m (u = oo) = 0,

It is immediate from (2 . 5) and (2.6) that Q",~ ( [i  oo) = o if and only if u
is m-invariant.

If q > 0 we let Excq and Eq denote the q-excessive measures and functions
respectively; that is, excessive relative to the semigroup Using
the obvious notation one has for q > 0, Excq = Disq, but there may exist
non-zero elements in Invq.

Next we recall Hunt’s balayage operation on Exc as extended in [8].
Let B E 8 and define ’tB - inf { t : Y~ e B }. Then iB _ oo and

is in G*t~(G0t)*. If m E Exc, define for f~p ~
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This is independent of t. It is shown in [8], that if m E Dis and 
then In particular Of course, for

m E Excq is defined similarly relative to the Kuznetsov measure qQm corres-
ponding to m and the semigroup (Pf). In referring to [8] one should note
that Fitzsimmons and Maisonneuve use LB for what we denote by RB
defined in (2. 7).

Finally we record some results about dissipative measures that will be
needed later. It is shown in [I], that if m E Con and u E E then a. e.

m. Consequently by the remark below (2 . 6) and (2 . 4) - recall Con c
Inv - one has for m e Con, u e E with m (u = oo) = 0,

The proof we give of the following proposition is due to R. M. Blumen-
thal. It is much simpler than our original proof.

(2. 9) PROPOSITION. - Let m E Con and u E E. Then

Proof - It suffices to suppose u is bounded. If D is a nearly Borel set
let and v 0. Let ( x) -
P" (o  LD  oo). Then is excessive and because 0 as t ~ oo and

m eCon, ~D = 0 a. e. m (since a. e. m). If let Aq = ~ u > q ~
and Bq = {uq}, and set F = = 0 = 03C8Bq}. Then m(Fc)=0. Sup-

pose xeF and q  r  u (x). Since > o) = P" (TAr  oJ ) = I , one must
have that is, a. s. Px, for arbitrarily large t.
Suppose  oo) > o. Then P"(LB = oo) > o and so u ~ X t  q for arbi-
trarily large t with positive P~ probability. But lim u o X~ exists a. s. P~

t -~ 00

and so  oo) = o. Since qu(x) was arbitrary one has a. s. P",
f or all t, and similarly for all t. D

Let and Then using ( 2 . 9) one has f or m
almost all x

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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and letting t - oo this implies that cpB {x) _ (x)]2. This proves the follo-
wing :

(2.10) COROLLARY. - Let and m E Con. Then for m a. e. x, cpB (x)
is either zero or one.

3. THE ENERGY FUNCTIONAL

In [20] (see also [4]) Meyer associated with each m E Exc and u E E a
number L(m, u) with u) _ oo, which generalizes the notion of
"energy" of two measures with respect to a potential kernel in the situation
of duality. In [4] and [20] the resolvent is assumed to be transient, but the
proofs carry over to our general situation (as described in section 2) with
only minor modifications. These are based on the following observations.

Let m e Dis and with g > 0 and m(g)oo. Then Ugoo a. e. m,
and the argument on page 402 of [10] shows that there exists an hE pb 8
with on E It now follows by standard
arguments (see for example II-2 . 19 of [2]) that if u ~ E then there exists
an increasing sequence of potentials U fk such that u = lim U fk on

~ U h > 0 ~, and hence a. e. m. If, moreover, then m (g)  oo implies
that U g  oo a. e. ~., and so U he increases to u a. e. Jl as well as a. e. Jl U.
We shall now sketch the steps in the construction of the functional L

referring to [4] or [20] for the proofs. It is first shown that if m E Pur and
u = U f with m(f)oo, then

Obviously, this then extends to arbitrary In (3 . 1), 
is the unique a-finite measure such that m = 11 + qm Uq. Since ~~m clearly
( n, u ~ is unchanged if u is changed on a set of m-measure zero. Since
according to the above remark, for u E E there exist potentials U fk increa-
sing to u a. e. m, it then follows from (3.1) that q  m - qm Uq, M )> increases
with q. Hence one defines for m E Pur and u E E

(Here and in the sequel I lim means that the limit in question is an
increasing limit.) From (3 . 1) and (3 . 2) the following facts for m E Pur
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and u E E can immediately be derived:

To obtain (3.7) recall that one may choose u a. e. p U and also a. e.

~,. Therefore from ( 3 . 4) L ( ~, U, u) = lim ~. U ( fk) _ ~, (u). Furthermore, if
k

~00
is an entrance law for representing m, i. e. m = 0 t dt, then

since s U I m as s ~ 0 one has from (3.6) and ( 3 . 7),

Finally, for general m E Exc and u E E one defines

where the second equality follows from (3.6) and the fact that any
purely excessive measure is the increasing limit of potentials [as explained
preceding (3. 8)]. Let with g > 0 and m (g)  oo. If m-~ m~ + ma and

11 E Pur, then me is carried by {U g= oo ~ while md and 11 are carried by
}. Thus 11 _ m if and only if r~ Consequently one has

One readily checks that (3. 3)-(3. 6) remain valid for general m E Dis. In
fact, L is the unique map from Exc x E to [0, oo] that is bilinear for

positive scalars and satisfies ( 3 . 11 ) and (3. 3), ( 3 . 7), (3. 5), ( 3 . 6) extended

Annales de I’In.stitut Henri Poincaré - Probabilités et Statistiques
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to m E Dis. For m E Exc, L (m, . ) is extended to the class of supermedian
functions by setting

for s supermedian where s --_ lim Pt s denotes the excessive regularization

of s. Furthermore in using L (m, u), there is no loss of generality in

supposing that u is Borel measurable excessive, because given u E E and
m e Exc there exists a with u = v a. e. m by ( 6 . 11 ) of [15], and
L (m, u) = L (m, v). If m E Pur and with m(f)oo then arguments
analagous to those leading to ( 3 . 1 ) and ( 3 . 2) yield

where denotes the associated semigroup. This implies that for m E Pur
and u e E

If u E E, then, as is well known - see e. g. the argument leading to (4. 6) in
[16] - the potential of t-1(u-Ptu) increases to u as t ,[ 0 on {u~ and
lim Consequently if meDis with and u p is the

purely excessive part of u [see (2. 5)], then using (3. 4) and (2. 5) (iii);

Recall that if m E Con, u = Pt u a. e. m, so m, so (3. 14) is valid for all

m E Exc with m {u = oo) = 0. All of the preceding statements either may be
found in [4] or [20] or are easy consequences of results proved there.
The name "energy functional" for L is motivated by the following:

(3.15) Remark. - Suppose X and X are in strong duality with respect
to some excessive reference measure and with potential density kernel
u (x, y) as in Chapter VI of [2]. If is the potential of a

measure ~, and f = U v --_ is the potential generated by

the measure v, then
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That is L (Jl U, U v) is the mutual energy of the measures ~ and v with

respect to the kernel u ( . , . .). Therefore, in general, L should be thought
of as the "energy" between an excessive measure and an excessive function.
The next proposition states that the energy functional is the pairing that

makes RB and PB dual objects.

( 3 . 16) PROPOSITION. - Let m E Exc and u E E. Then

Proof - In (5.8) of [8] it is shown that (RBm)d=RB(md) and

(RB m)~ = RB (m~). Therefore because of (3. 11) it suffices to prove (3 .16)
for m E Dis. Choose increasing to m. Then according to (5.9) of
[8], ( ~,n PB U) increases to RB m, and using ( 3 . 6) and ( 3 . 7) one obtains

u) = lim PB ( u)
n n

Before we come to discuss the relationship of the energy functional with
the definitions of capacity and cocapacity as given in a previous paper
[16], we state one more property of the functional L.

(3.17) LEMMA. - Let m e Dis and u e E. Then L (m, u)=O if and only if
u=0 a. e. m.

Proof - Clearly L (m, u) = 0 if u = 0 a. e. m. On the other hand, since
m E Dis there exist potentials U fk increasing to u a. e. m. Hence from (3 . 4)
one has L (m, and L (m, u) = 0 implies m (fk) = 0 for all k,

k

which gives for all k and all Hence 
q

a. e. m for each k and so u=O a. e. m. ~]

{3 . 18) Remarks. - In [16], given meExc, we associated two numbers
C (B) -_- Cm (B) and C (B) - Cm (B) with any set by defining

where and We defined B to be

transient (resp. cotransient) (relative to m) provided Qm (~,B = oo) = 0 [resp.
Q,~ (iB = - oo) = 0], which according to (4. 1) [resp. (4. 7)] of [16] is equiva-
lent to PB 1 being m-purely excessive (resp. RB m E Pur). [Recall the defini-
tion of m-purely excesssive below (2. 5).] It follows from (5. 3) (iii) of [8]
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that in (4.9) of [ 1 6] - defines an

entrance law for representing the purely excessive part of R~~ i.e.
/*00

~o And the proof of (4.10) of [16] actually yields

On the other hand, in (4.3) of [16] it was proved

where cpB --- PB 1.
The following relations of the set functions C and C with the energy

functional have already been pointed out in ( 1. 4) and (2. 3) of [23].

( 3 . 22) PROPOSITION. - Let m E Exc and B E. Then

Proof. - ( 3 . 23) follows from ( 3 . 20) and ( 3 . 8); (3.24) follows from
(3.21) and (3.14). D

(3.25) Remarks. - In particular, if B is cotransient one has

ê(B)=L(RBm, I), and if B is transient one has C ( B) = L ( m, PBl).
Moreover, if B is both transient and cotransient the equality of C (B) and
ê(B) follows from (3.16). In (3.15) of [16] we gave a purely probabilistic

proof for that. Also the proof of (3.24) shows 
t

ses to C (B) as t decreases to zero, this sharpens (4.3) of [16], which
merely states that the limit is increasing along the sequence {2-k}. Further-
more from (3. 17) we obtain the following characterization: a set is

m-polar (i. e. a. e. m) if and only if L (m, 1) and
m~ = 0. This in fact generalizes the result (3. 11) of [16].
We turn now to some additional properties of L. We denote the energy

functional relative to the semigroup (Pq) by Lq (for q > 0). Thus Lq is
defined on Excq x Eq. In case q > 0 there are no q-conservative measures,
therefore Excq = Disq. In general, for q > 0, one has Excq = (~ Excr.

r>q
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(3.26) PROPOSITION. - Suppose that 0 _ r  q and m E Excr and uEEr.
Then

Proof - We shall prove this when r = 0. The general case then follows
by taking (P~) to be the basic semigroup. Suppose m E Con. Then

L(m, u)=O according to (3.11), and since Con c Inv one has m=qmUq
and therefore Lq (m, u) = qm (u) [according to ( 3 . 7) applied
to the q-subprocess], which gives (3 . 27) for m E Con. Next suppose m E Dis.
Then there exist potentials increasing to m. Let so

that increases to m. Then

But ( ~n (u)) increases to L (m, u) and ( ~n U) increases to m, which establi-
shes ( 3 . 27) for m E Dis. 0

(3.28) COROLLARY. - (a) If m E Inv and uEE, then m(u)oo implies
L (m, u) = o. (b) and m E Excr and uEEr, then

where mrp denotes the r-purely excessive part of m.

Proof - Arguing as in the first part of the proof of (3.26) one finds
for q > 0, Lq (m, u) = qm (u). Thus part (a) follows from (3. 27). To prove
(b) we take r = 0 [as in the proof of (3.27)], then (b) follows as well from
(3.27) because according to (a) L(mi’ u) > 0 only if m(u)=oo. D

4. THE ENERGY FUNCTIONAL AND h-TRANSFORMS

We begin this section with some facts about h-transforms which will be
needed later. Most of these facts are well known. Some of them may be
found in [24]. There is a complete exposition in the Paris lecture notes of
J. B. Walsh [25]. See also [22].
As in previous sections X is a Borel right process constructed on the

canonical space Q of right continuous paths, and (Pt) and (Uq) are the
semigroup and resolvent of X. Let h be an excessive function and let
E,~ _ ~ ~  h  oo ~. Then Eh is nearly Borel (in particular Eh E 8*), and Borel
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if h is Borel. Defines kernels by

Then it is well known and easy to check that is a subMarkov

semigroup on E and each maps Borel functions into nearly Borel
functions - in fact into Borel functions if h is Borel. If x E the measure

Pthj (x, . ) is carried by Eh for each t > 0. It is evident that Pt (x, . ) does not
charge ( h = ~} when h (x)  oo and does not charge ( h > 0} when h (x) = o.
It is known (see, e. g. [22], [24], or [25]) that there exist probabilities P"~h
for xeE on Q so that Xn = (X, is a right process (Borel right process
if h is Borel) with state space (E, 6) and semigroup Both Eh and
E - E~ are absorbing sets for Xh and, of course, if xEE-Eh, then under

the process sits at x forever. We denote the resolvent of by
( Uqh~). From ( 4 . 1 ),

A function or measure is h-excessive provided it is excessive relative to
the semigroup We use the notation E (h) and Exc (h) for these
classes. Note the distinction between Pq = e - qt Pt for q E (~ + and for

hEE. Also note that if hEE and q > o, then h~Eq and 
that is taking the h-transform and the q-subprocess commute.
The following result is due to Walsh [24].

(4. 2) PROPOSITION. - (i) If v is h-excessive, then there exists an excessive
u with u = hv on ~ h  oo ~ . If h and v are Borel one may choose u Borel.

(ii) If u is excessive and v E p ~* satisfies u = vh on {h  oo }, then v is h-
excessive.

The next proposition describes the situation for excessive measures. The
notation Pur (h), Dis (h), etc. is self-explanatory.

(4. 3) PROPOSITION. - Let m E Exc and h E E with m (h = oo) = o. Then:
(i) hm E Exc (h).
(ii) If m ~ Pur [resp. Inv], then hm E Pur (h) [resp. Inv (h)].
(iii) If m E Dis, then hm E Dis (h) and one may choose measures ~," carried

by ~ h _ n ~ so that ~n U T m and (h T hm.
(iv) If m E Con, then hm E Con (h).
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Proof - The proofs of (i) and (ii) are straightforward and left to the
reader. For (iii) suppose first that there exist measures n carried by
~ h  n ~ with J.ln U i m. Since U (fh) (x)=0 if h (x) = 0, the following steps
are easily justified for fEp8.

To produce such first choose v~ with vnUjm. Let Each

Bk is a finely open nearly Borel set and B where 

m. Now vn PBk U increases with both n and k and 03BDnPBk~RBkm as

n --~ oo . According to ( 5 .14) ( b) of [8], T RB m oo . We claim

that RB m = m. From (2. 7), it suffices to show Qm (iB > a) = 0. But for each
rational r

where the last equality follows because B is finely open and m (E - B) = o.
This shows that Qm > u) = 0, establishing (iii) with ~,,~ = VnPBn.
Finally suppose m E Con. If g > 0, then because

one has

But the integral over ~ ~  h _ n ~ is dominated by n . m [o  U (gh)  oo] = 0
since we Con. S ee [1]. Similarly

because

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



337ENERGY FUNCTIONAL

a. e. m since Pt h = h a. e. m. See [1]. Therefore hm E Con (h). D

(4 . 4) Remark. - An immediate consequence of (4. 3) is that (hm)p = hmp,
and (hm)c=hmc. Of course, (hm)p denotes the

purely excessive part of hm with respect to and the other expressions
are defined analogously.
For h E E we want to define the energy functional L~ corresponding to

If h is Borel, the semigroup is Borel and the discussion in section

3 applies. In general X~ is only a right process and one can not apply the
results of section 3 directly. Of course, in [4] the basic object is a transient
resolvent on an abstract measure space subject to certain hypotheses which
are satisfied by the resolvent (Uq~~) restricted to Eh provided it is transient.
However, the extension in section 3 to dissipative m in the non-transient
case uses results which are proved in the literature only when the under-
lying process is a Borel right process. Although these results are undoub-
tedly true more generally, we can avoid the difficulty by considering only

which are of the f orm ~ = hm with m E Exc and 
Such a ~ is carried by Eh and determines m uniquely on ~ h > 0 ~. By (6.11)
of [15] there exists a Borel measurable excessive function g with g _ h and
m (g  h) = o. So ~ =gm also, and for ç and m almost all x,

Pth~ (x, . ) = Ptg~ (x, . ) for all t. Since is Borel we may define L~ (~, u)
for relative to the semigroup (Pt9~). If v E E (h), then v = v

a. e. ~. Consequently v satisfies the hypotheses of (6.19) in [15] relative to
ç and P(g)t, so there exists w ~ E (g) with w = v a. e. ç. We then define

=gm)

and this does not depend on the choice of g or w. If m E Dis and v E E (h)
and u is the excessive function in (4. 2) (i), then there exist U fk T u a. e. m.
Let on Eh and f k =0 off E~. Then T v a. e. m on Eh.
Whenever e. m on Eh one has w a. e. ~ = gm and so
from (4. 5)

If mk T m E Dis and a. e. m, then
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Thus (4. 6) and (4. 7) extend the basic properties of L to L~ as defined in

(4. 5). The restriction to measures of the form hm is completely analagous
to considering the Kuznetsov measures which correspond to hm and

(4. 8) PROPOSITION. - Let m E Exc and hE E with m (h = oo) = o. Let

v E E (h) and u E E with u = hv a. e. m on {h  oo ;. Then L~ (hm, v) = L (m, u).

(4 . 9) Remarks. - By (4 . 2) (i) for a given v E E (h) there always exists
such a u with the equality holding everywhere Since u = hv

a. e. m because m (h = oo) = 0 one may abbreviate the conclusion of (4. 8)
as Lh(hm, v) = L (m, hv). Note that s = hv and s = o0 on

{ h = oo ~ is supermedian and its excessive regularization s = u. The most
important special case of (4. 8) is t?= 1, in which case the conclusion is

Proof - In view of the definition (4.5) and (4.4) we may suppose
m E Dis since both Lh (hm, . ) and L (m, . ) vanish if m E Con. Also from

(4 . 5), Lh (hm, w) where w ~ E (g) with v = w a. e. gm = hm. Con-
sequently u = hv = gw a. e. m, and so in proving (4. 8) we may suppose that
h E ~. Then from (4. 2) (i) it suffices to consider the case u = hv everywhere
on { h  oo }. By (4. 3) (iii) there exist measures Ilk carried by {h  ~} with
~.k and ( h hm. Therefore

where the third equality follows because is carried by ~ h  oo} and
u=hv on ~ h oo }. D

5. THE ENERGY FUNCTIONAL

AND KUZNETSOV MEASURES

In this section we shall express L (m, u) in terms of Q"m under some
conditions on m or u. In the course of our discussion we shall need some
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extensions of results in [8] and [16] which are of interest in their own right.
We fix m E Exc and u~E

We first extend the definition of C and C in [ 16] - see (3. 19) -to
general u. 

’

(5 .1) DEFINITION. - For each BE tff de fine

It is then immediate that and

When u and m are fixed we often shall suppress
them in our notation if no confusion is possible. In particular we write

and to agree with the notation in (3 . 19). The follo-
wing proposition will often allow us to reduce the case of a general u to
the case u = 1. We need some notation for its statement. If let 

denote the hitting operator of B relative to the u-transform Xu; that is,

Similarly denotes the balayage operator on Exc (u) relative to X".
Since Q:. is the Kuznetsov measure corresponding to urn and the semigroup

from (2. 7) we have

( 5 . 4) PROPOSITION. - Let u E E, and m E Exc with 
Then (i) 1 ~} and (ii) RB m.

Proof. - Assertion (i) is just Proposition 1.4 in [24]. For (ii) one first
checks that if then

Therefore from (5. 3)

proving ( ii) . D
We have the following generalization of (3. 22).

( 5 . 6) PROPOSITION. - Let BE 8. Then
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and

Proof - If u = 1, this reduces to (3 . 22). It follows readily from (5.4) (i)
that (Of course, (PB u)p [resp. is

the purely excessive part of PB u [resp. 1] relative to the semigroup 
[resp. (Ptu~)].) Consequently in light of (3 . 24) for the process X" and (4. 8)

Using (4. 4); (4.10), and (5. 4) (ii) one has

and so from (3.23) applied to Xu

Remark. - The argument reducing (5. 6) to (3.22) is the prototype of
an argument that will be used several times in the sequel.
We shall say that is u-m-transient (resp. u-m-cotransient) provided

Qt‘m (~,s = oo) = 0 [resp. Qm (iB = - oo) = 0]. These agree with the definitions
in [16] when u =1. Proposition 4 . 1 of [16] applied to the u-transform of
X states that B is u-m-transient if and only if a.e. urn, and,
since in view of (5.4)(i), this is equivalent to 
a. e. m. Similarly by (4. 7) of [16], B is u-m-cotransient if and only if

(RBu~ (um))i = 0, or by ( 5 . 4) (it) and (4 . 4), This immediately
implies the following statement.

(5. 7) PROPOSITION. - Let If B is m-cotransient, then it is

u-m-cotransient. If u > 0 a. e. (RB in particular if u > 0 a. e. m, and B is
u-m-cotransient, then it is m-cotransient.

It follows from (5 . 6) that Cm,u(B)==L(m, PBu) if B is u-m-transient

and that u) if B is u-m-cotransient. If B is both u-m-

transient and u-m-cotransient, one has because

of (3.16).

(5.8) Remarks. - Both assertions in (5.7) are false if cotransience is

replaced by transience. Let X be translation to the right on R at unit speed
killed exponentially with parameter one so that Pt f (x) = e - t f (x + t). Let
m be Lebesgue measure. Since Pt 1 -~ 0 as t -~ oo, each is m-transient.

Let u (x) = ex. Then If B = ]0, oo [, one checks that and so

by the remarks above (5. 7), B is not u-rn-transient. Similarly if X is
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translation to the right at unit speed on R and u (x) = e - x, then B=]0, oo[ [
is u-m-transient but not m-transient. Hence there is an essential difference
between transience and cotransience as far as (5. 7) is concerned.
We now introduce the birthing operators br, - oo _ r  oo and the killing

operators ks, - oo  s _ o0 on W as follows:

The next result is an extension of (5. 3) (ii) in [8].

(5 .10) PROPOSITION. - Let BE fff. Then

Proof - If u = 1, (i) is just (5. 3) (ii) in [8]. Let Qu denote the Kuznetsov
measure corresponding to um, 1, and so Then

where the second equality follows from the case u = 1 and the third from
(5. 4) (ii). Similarly using (5. 4) (i) it will suffice to prove (5 . 10) (it) when
u =1. Denote the measure on the right side of (5.10) (ii) with u =1 by Q.
Then

But where is the last exit

time from B for X. Now Px > 0) = cpB (x) --_ PB 1 (x), and so

A similar calculation shows that Q and QmB have the same finite dimensio-
nal distributions, and hence (5.10) (ii) with u =1 follows by the uniqueness
property of Kuznetsov measures. D

( 5 .11 ) Remark. - As in [8], ( 5 . 10) (i) extends immediately to the class
of intrinsic stopping times T defined there. There is a similar extension of
(5 . 10) (it) to "stationary times X corresponding to coterminal times". We
shall not pursue this here. However, note that (5. 10) (ii) gives the following
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formula which is analagous to the definition (2. 7) of RB m,

f or each t E I~.

Proof - Since it follows that on

{ iB  oo }, and hence (i) is an immediate consequence of (5.10) (i). Combi-
ning the above remark with (2. 4) and (5 .10) (i) we have

where for the last equality we also use Z ~ b _ ~ = Z. Similarly 
on { ~,B > - and Z ~ k ~ = Z, and so one obtains (iii) and (iv) from (2.6)
and ( 5 . 10) ( ii) . Q
Here is the relationship between the energy functional and the Kuznetsov

measure promised in the first sentence of this section.

( 5 .14) THEOREM. - Let m~Exc and ueE with m (u = oo ) = o. 7hen

Q~‘m (o  a  1) = L (rrc p, u) and Qt‘m (o  ~3  1) = L (m, up). In particular if
m e Pur, L (m, u) = Qm (0  a  1) and if u is m -purely excessive

L(m, u)=Q=‘m(o(31).

Proo f - Applying (5 . 13) (i) with B = E yields Q~‘m (o  a  1) = Cm, u (E)
since RE m = m. But from ( 5 . 6), C~, u (E) = L (m p, u) proving the first asser-
tion in (5.14). The second is established in a similar manner using
(5. 13) (iii). D

Remarks. - There is another approach to ( S . 14). If m p = ~0 03BDt dt where

03BD=(03BDt)t>0 is an entrance law, then = 03B8t(Qu03BD)dt. Using this and

(2. 4) a direct calculation shows that
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where the last equality follows from (3. 8). If up is the integral of an "exit
law" - see [6] - then a similar argument gives (0  1) = L {m, up).
However, up need not be the integral of an exit law and so here one
obtains a weaker result than ( 5 . 14) .

6. SOME BALAYAGE IDENTITIES

In this section the balayage operators RB will be investigated and
particularly their dependence on q. We first need to establish some auxi-
liary relations between the resolvent (U~) and the hitting operators 
of X. Recall that 

We shall let (Vq) denote the resolvent of X killed when it first hits B; that
is

It is well known and easily checked that (Vq) satisfies the resolvent equation
and that

Proof - LetfEpbG. Then

and splitting the integral into Moreover,
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which is (ii). D

( 6 . 5) COROLLARY. - Let q, r >- 0. Then

Proof - This is an immediate consequence of ( 6 . 4) . D

( 6 . 7) COROLLARY. - Then

In particular in case r > 0 this implies

furthermore for r >_ 0

Proof - Applying (6 . 6) to Uq and adding the term (q - r) PB Ur Uq to
both sides of the equality yields ( 6 . 8) because of the resolvent equation.
In case r > o one obtains (6. 9) from (6. 8) by subtracting the second term
on the right hand side and using ( 6 . 3) . To see ( 6 .10) assume first that
Orq. Applying ( 6 . 9) to Pp yields (6.10) because

by ( 6 . 4) (ii) . Letting r decrease to zero gives ( 6 . 10) for r = 0 as well since
the convergence is monotone. D

In discussing the balayage identities we shall need some properties of
conservative excessive measures. -

(6 . 11) LEMMA. - Let m E Con and Then 

and Qm ( - oo  ?~B  oo ) = o.

Proo f - m E Con implies RBmEConcInv, hence for

any Letf>O with Then

Letting t -i oo and using (2.8) we obtain Qm ( - oo  iB  0)=0. But
Tp 0 8t = and so by the stationarity of Qm, Qm ( - oo  iB  t) = 0.
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Letting t ---+- 00 establishes the first claim in (6.11). A similar argument
starting f rom m = m (/Pf establishes the second. D
For the next result recall that PB 1 =P (TB  oo) and the definition

of R~ below (2.7).

(6.12) PROPOSITION. - Let m E Con, Then

(i) 
(ii) for q >__ 0;
(iii) 

Proof - To prove the first assertion let f > 0 with m ( f )  oo . Then

using ( 6.11 ) one obtains

a. e. Qm and so

which establishes (i). Now from (2.10) we know that a. e. m, cpB is either
zero or one, and P§1 will be zero for q >_ 0. Therefore

To see (iii) observe that since m is invariant,
for q > 0, hence by the remarks below (2.7) applied to the
q-subprocess, RB m = qm PB Uq = q (RB m) Pè Uq by (ii). D

(6.13) Remark. - Since Pur c Dis, it is clear that B cotransient implies
RB m E Dis. But from (6.12) (i) it follows as well that B transient implies
RBmEDis. To see this observe that by (5.8) of [8], and so
RBmEDis is equivalent to But B transient implies m~ (cp~) = 0
and therefore according to (6.12)(i) 
We shall now state a relationship between and for general m.

Proof - We shall prove this for r = 0; the general case then follows by
taking (P~) to be the basic semigroup. First let m E Con. Then since

.RBmECon c Inv (6.14) is obtained from (6.12) (iii). If m e Dis then m is
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the increasing limit of potentials Jln U, and so and
n

also m = T lim vn Uq where vn == Consequently
n

RqB m = ~lim 03BDn PqB Uq. Hence from (6.8)
n

which is ( 6.14) for r=0. D

(6.15) Remark. - Since (6.14) is an identity between a-finite measures
even when r=0 (both terms on either side are dominated by m) one may
write it as

where the expression in brackets is a positive a-finite measure. Also, using
(6.3), as a-finite measures. Therefore

(6.14) may as well be written

(6.18) PROPOSITION. - Let m E Exc, r >_ 0, and Then RqB m increases
to Ri m as q decreases to r.

Proof - As in the proof of (6.13) it suffices to prove this for r=0. Let
(Kt) denote the semigroup of X killed when it first hits B so that (Vq)
defined in (6.2) is the resolvent of (Kt). In the course of the proof of (7.1)
in [16] (see the paragraph below (7.16) in [16]) it was shown that RB m Kt
decreases to zero as t -3 00, or in terms of the resolvent, q RB m Vq decreases
to zero as as provided  00 or

only for some q > 0]. Consequently because of (6.17),
Râ m (f) increases to RB m ( f ) whenever RB m (f) is finite. Since RB m is a-
finite this implies that Râ m i RB m as q decreases to zero. D

Remark. - Letting q decrease to zero in the first equality in (9.3) gives
, 

an alternate proof of (6.18).
The following important identity will be used in section 7.
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Proof - Since as r decreases to zero P~ increases to PB and Rim
increases to RB m according to (6.18), it suffices to prove (6.20) for r > 0.
But for r > 0, Excr = Disr so that there exists a sequence of r-

potentials n Ur increasing to m, which implies p," PB Ur T RB m. Let

Then and thus 

Hence using ( 6.10),

proving (6.20). D

7. CAPACITIES AND q-CAPACITIES

In this section we fix m E Exc and u eE with m (u = o~o ) = 0. For each
q >_ 0 and we define

where the last equality follows from (3.16) (applied to the q-subprocess).
If q = o, then because of ( 5. 6)

Also, if q = 0, by (3.10), On the other hand, if q > 0, then
Dis~ always. Our first result shows that rq behaves like a capacity.

In (7.12) it will be shown that, at least for dissipative m, rq is the proper
extension of the notion of capacity and cocapacity as defined in [16] to
arbitrary Borel sets.

(7.3) THEOREM. - Let A, and q >_ 0. Then

Proof - We prove (7.3) only in case q=0, the general result then
follows by taking (Pi) as the basic semigroup. The argument is the same
as part of the proof of (4.5) in [16]. If A c B, then = PA 1  PB 1 = cpB,
and L (m, .) is monotone, which yields (i). For (ii) observe that
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and so which yields (ii). If then

Ts and T which implies (iii) according to (3.5). m
The next result deals with the dependence of rq on q.

(7.4) THEOREM. - Let 0  r  q and Then

Proof - Note that the second equality follows from (6.20). As before
it suffices to prove (7.4) in case r = 0. Suppose first m E Con. Then

r (B) = L (m, PB u) = 0, hence since m is invariant and because of ( 6.12) (ii)
we obtain

Now, if m E Dis then there exists a sequence of potentials U increasing
to m. Let vn - Then Therefore

where the last equality is because of (6.6). Since

by (3.6) and (3.7), and this yields (7.4). Q
In the following we investigate the relationship of the set functions Cq

and Cq, i. e. the function C and C relative to the q-subprocess, with rq.
Let q~ denote the Kuznetsov measure corresponding to m, u, and the
semigroup (P~), which is the same as the Kuznetsov measure corresponding
to um, 1 and the semigroup Recall that iB -_- inf ~ t : and

ÀB = sup{t: and define 
’

If q>O then as t -~ oo, when with  oo . Thus
m E Purq and so RB m E Pur~. Therefore by (5.7) applied to the q-subprocess
each BEe is q-u-m-cotransient. Also and hence
tends to zero as t --~ oo if u (x)  00. Consequently by the remarks above
(5.7) each is q-u-m-transient. Therefore by (5.6) and the definitions
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(7.5) we have

In case the corresponding relation is (7.2). From (7.6) it is clear that
Theorem 7.4 can be stated as well with C or C in place of r provided
r > 0. What we are going to prove next is that this is true even for r=0.
For that we first prove two auxiliary results.

Proof - Let f ~ p ~. Using (2.7) and (5. 1 3) (it) twice one obtains

proving (i). On the other hand using (5.12) and (5.13) (iv) twice,

Since f ~p ~ is arbitrary this yields (ii). m

Proo f - Since one obtains by applying (3.7),
(7.1), (7.4), and (7.7),

Hence, if is finite, then u) must be zero. On the
other hand, analogously, since a. e. m,
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which leads to the second statement accordingly. D

(7.9) THEOREM. - Let B~~ and q > 0. Then

Proof. - We know from (7.4), (7.6) and (5.6) that

and

Now, Lemma (7.8) implies that if  oo then L((RBm)i’ u) = 0,
and if  oo then L (m, (PB =o. If either of them is infinite,
however, then Therefore in any
case the equalities claimed in (7.9) are valid. D
The subsequent corollary states some characterizations of u-m-(co-)

transience. The proof is immediate from the discussion preceding (5.7),
from (7.8), (3.17) and (6.18).

(7.10) COROLLARY. - Let m ~ Dis and B ~ ~. Then

( 1) the following are equivalent:
(i)  oo for some q > 0;

. (ii) B is u-m-transient;

(iii) RB m = 0;
(iv) RB m ((PB u)1) = 0 for all q >_ 0;

and (2) the following are equivalent:

(a)  oo for some q > 0;
(b) B is u-m-cotransient;
(C) (RB ( PB u) _ ~?
(d) q >_ 0.

(7.11) Remark. - If m e Dis and then it follows from (7.10) that
if for some q > 0, is finite then B is u-m-transient

and u-m-cotransient and (of course) C (B) = C (B). The assumption that
m E Dis is actually only used in showing that B is transient and cotransient.
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In fact, (7.4), (7.6) and (7.9) imply for any m E Exc with m (u = oo ) = 0 that
if is finite, then C ( B) = I’ ( B) = C ( B), possibly
infinite. See the second example in (8.3).
By means of the preceding results we are now able to prove that - at

least for dissipative rn - r coincides with the outer capacity extension of
C and C to 6 as mentioned earlier. Recall some definitions from (4.16)
of [16]. ~ denotes the set of all that are both transient and cotransient

with r(B) = C (B) = C (B) finite. Let ~a denote the set of countable unions
of sets in ~, and for A E 

Then, if one sets for any F c E

I* defines an outer capacity on E which agrees with r on P (according to
111-32 of [3]).

(7.12) THEOREM. - If m E Dis then I* = r on ~.

Proof - It is clear that I* agrees with r on ~a, since both are

continuous on increasing sequences. We claim that in case m E Dis.

If so, then there exists a sequence in EP increasing to E; thus for any
the sequence ( Fn) where F n - F ~ En is in ~ and increases to F, and

so

i. e. I* = r on ~. To verify the claim fix q > 0, and choose f ~ ~ with

0  f  1 and m ( f)  ~. Then U f_ U 1 _ 1  ~. Let
q

which increase to E as n --~ oo. Furthermore, since 1  n Uq f on the fine
closure of Bn, PBn 1 __ n Pân Uq f _ n U q f Therefore

It follows by (7.4) and (7.11), since m E Dis, that each B" is transient and
cotransient and r(BJ  oo. Consequently D
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Of course, the result (7.12) does not apply for conservative m, because
then r - as it is defined - is zero always whereas I* is infinite on nonpolar
sets (as the infimum over the empty set).

8. BEHAVIOR OF rq AS A FUNCTION OF q

In this section we shall show that for BEG the function

q ~ u (B) as defined in (7. 1) has smoothness properties on
]0, oo and moreover under some finiteness assumption behaves properly
as well at q = 0. As in section 7, m E Exc and u E E are regarded as fixed
with 

(8.1) THEOREM. - Let Then q -~ rq(B) is increasing and continuous
on ]0, oo [, and if it is finite for some q > 0, then it is finite for all q >_ 0. If
RB m (Pi u)  oo for some q > 0, then lim hq (B) = r (B).

(8. 2) Remarks. - By Theorem 7 . 4 with 0 = r  q, if  oo, then

RB m (PB u)  oo. Therefore q -~ is continuous and finite on [0, oo[
whenever rq(B)  oo for some q>O. Furthermore it follows from (7. 6)
and (7 . 9) - see also ( 7 . 11) - that Theorem 8 .1 remains true if one replaces
r by either C or C in its statement.

(8. 3) Examples. - Our first example shows that q -+ rq (B) may be
discontinuous at zero. Let X be translation to the right on R at unit speed,
m be Lebesgue measure, and u =1. Let B = ] - oo, 0]. Then according to
(9.1) of [11], Cq (B) = Cq (B) = rq (B) = oo for q > O. Moreover (see (8 . 2) of
[16]) : C ( B) =1 and C(B)==0. it follows that r(B) = 1. In
this example m E Dis. For general X if m E Con and m (PB 1) = oo, then
from (3.27), for q > 0, while h (B) = 0. Our second example
shows that it is possible to have RB m (P§ u)  oo for all q > 0 and r (B) = oo.
See also (7.11). Let E=]0,l[ and X be translation to the right on E at
unit speed. Let ak =1- 2 -k, k >-1 and p Then m = p U is a-finite

and hence excessive. Let u =1 and B = ~ ak : k > 1 ~. Then one easily
checks that 1 ) = oo and that for q > 0,

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques



353ENERGY FUNCTIONAL

Proof - Using (4. 8) and (5.4) for the q-subprocess and remembering
that taking u-transforms and q-subprocesses commute, it suffices to prove
(8.1) in the case u= 1. See the proofs of (5.6) and (5.10) for a similar
reduction. Suppose q > o. Then

since TB o 03B30 = ~ if 03BBB  o. We shall need to use Theorem 6. 8 of [8]. Let J
be the closure in ]a, [i[ of { t : Let G be the set of left end points
contained in ]a, [i[ of the contiguous intervals to J; that is, the maximal
open intervals contained in ]a, Then according to (6. 8) of [8], there
exist a a-finite measure v on E and a kernel of a-finite measures, *Px
from (E, ~*) to (Q, ~ *) such that if F = F (t, x, c~) >__ 0 is universally
measurable x ~ x F0, then

We use this as follows. Let If Go yo and

03C4B  0  03BBB, then and hence Go> a. Moreover TB o 03B30  03B2 because

0  ~,8. Hence ]Go, yo[ is the contiguous interval containing zero and
GoEG. Therefore and if and only if r=GoEG,

and and in this situation r + yr = Tp o y~. Define

Then by ( 8 . 5) and the above discussion

We also claim that
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Before proving ( 8 . 7) and ( 8 . 8) let us use them to establish ( 8 . 1 ) . Combi-
ning (7.4) and (8.4) together with (8.6), (8.7), and ( 8 . 8) we see that

where Let h (q) denote the second
term on the right side of (8. 9). Clearly h is increasing and by the dominated

convergence theorem h is finite and continuous on [0, r] with lim h (q) = 0
qj0

provided r>0 and We next claim that if r>0 and

h (r)  00 then for all q. We need only check this for

q > r. But h(r)oo implies that for each t > 0 and

since ( 1- e - rt) -1 ~ qr - I as t ~ 4, it follows that h (q)  ao . This
establishes the assertions in the second sentence of (8.1). If

for some q > 0, then from (8.4), ( 8 . 6), ( 8 . 7), and ( 8 . 8),
and M  00. It now follows from (8. 9) and the properties of h

that rq ( B) approaches r ( B) as q tends to zero.
Thus to complete the proof of (8.1) it suffices to establish (8.7) and

(8.8). Define 
’

Since the invariance of Qm implies that ~r (s) _ ~r (o) for

each s Now

and if GS  s, TB o 03B3s = 0, and iB  s  03BBB, then s is the right endpoint of
one of the contiguous intervals. But there are only a countable number of
such intervals for each w, and so this last integral is zero. Consequently
~ (o) = o which proves (8. 7). The argument for (8. 8) is similar except that

and imply that s is the left end point of a
contiguous interval. Q

Results similar to (8. 1) but under much stronger hypotheses go back
to Hunt. See page 191 of section 19 in [17], ( VI-4.16) in [2], and ( 2 . 14) in
[11]. The proof of (8.1) is in the same spirit as the proof of (2. 14) in
[11]. In fact, if with ~ finite, one may use the argument in [11]
and avoid the use of exit systems. The use of exit systems enables one to
extend the proof in [11] to general excessive m.
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Theorem 8 . 1 states that either q -~ rq (B) is identically infinite or eve-

rywhere finite on ]0, oo [. In the latter case the conclusion of (8.1) may be
strengthened.

(8 .10) PROPOSITION. - Let g (q) = rq (B) and suppose that g (q)  oo for
some q > ~. Then g has a finite continuous derivative on ]0, oo given by

Proo f - Let Then 03C8 is decreasing
in each variable. By hypothesis and (8.1), g is finite on [0, oo [, and so by
(7 . 4) if 0  s  r  q, then ~ (r, q) _ ~r (s/2, s) _ (s/2) -1 g (s/2)  oo. Since

PI u is a decreasing function of q it now follows by the dominated
convergence theorem that B)/ is continuous in each variable separately and

q) is continuous and bounded on ]s, oo [ for each s>0. But
g (q) - g (r) _ (q - r) ~r (r, q) by ( 7 . 4), and this establishes ( 8 .10) in view of
the above properties of D

9. ADDITIONAL REMARKS .

There is an alternate approach to some of the results in the preceding
sections that makes more use of the Kuznetsov measures. Since this

approach leads to a useful formula for R~, we shall briefly sketch the
method in this section. As before m ~ Exc and u ~ E are fixed with

m (u = oo ) = 0. Let denote the Kuznetsov measure corresponding to
m, u, and the semigroup ( Ptq~) . As in the case q = 0, this is the same as

the Kuznetsov measure corresponding to um, 1, and the semigroup
P~u~). Let br and k~ be the birthing and killing operators defined in

(5.9). Then by checking finite dimensional distributions one sees that for

and this extends to F E p ~ * . See also [12].
Fos simplicity let u = 1. The general case can be reduced to this special

case as in the preceding sections. If f ~ p ~ it follows from (9 . 1) that
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But for r  s, equals ’tB if r  iB  s, equals if 

and equals infinity in all other cases. Breaking the integral
in (9.2) into integrals one

obtains after some manipulations

where go = sup ~ t  0 : Note that it is immediate from the first

equality in (9 . 3) that Ri m i RB m as q ~ 0 since - ~  g0 ~ 0 if iB  0. If
one computes  1) in a similar manner and uses -the
second equality in (9.3) one obtains another proof of the identity

= C ( B) 1) in ( 7 . 9) . A similar calculation beginning with
and using the facts that for r  s, equals

7~B if if. and and

equals -~ in all other cases leads to another proof of the identity
Cq(B)=C(B)+qRm(PB1) in (7.9). - 

.

- 

- 
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