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ABSTRACT. - We study stochastic processes whose parameter sets are
random. In particular, we characterize the finite dimensional distributions
of a stochastic process whose parameter domain is a random open convex
subset of This result generalizes work of Kuznetsov, and others. It is
based on a theorem of Choquet, and an "inverse limit" theorem that
generalizes a result of K. Y. Hu. Applications are also made to Markov
processes and to processes with continuous paths.
Key words : Markov processes, stochastic process, random convex domain, Choquet’s

theorem.

RESUME. - Nous étudions les processus stochastiques dont l’ensemble
des paramètres est aléatoire. En particulier, nous caractérisons les distribu-
tions fini-dimensionnelles d’un processus stochastique dont l’ensemble des
paramètres est ouvert convexe aléatoire de Ce résultat généralise le
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travail de Kuznetsov, et d’autres. 11 repose sur un théorème de Choquet,
et un théorème « limite inverse » qui généralise un résultat de K. Y. Hu.
On donne aussi des applications aux processus de Markov et aux processus
a trajectoires continues.

1. INTRODUCTION

1.1. Since the middle of the 1950’s it has been conventional to consider
Markov processes defined on a random time interval [0, ~[. For example,
this is the natural domain for a process determined by "local characteris-
tics" (a countable matrix in the case of a denumerable state space, a
differential operator in the case of a diffusion, etc.).

Later, it was realized that there is an advantage in restoring symmetry
by considering a random birth time a, dual to the random death time. In
[D1] the class of Markov processes "alive" on a random interval ](x, P[ c R,
having a given transition function, has been described. Kuznetsov [Kl]
(see also [K2]) extended this result, allowing the path-space measure to be
o-finite (and typically infinite). This is a very important generalization;
for example, it makes it possible to associate a stationary Markov process
to each excessive measure of a given transition function.

Actually, the arguments used in [Dl] and [K1] are quite general and
apply to the non-Markovian case as well. These arguments yield a general
theorem for the existence of a stochastic process (Xt: a  t  [i) with given
"finite dimensional distributions"

Necessary and sufficient conditions for mtl, ... , tn ..., Bn) to be the
finite dimensional distributions of a process with random times of birth
and death have been stated in [D2].

In this paper we establish analogous conditions for the existence of a
stochastic process (Xr : t E A) where A is a random open convex subset of

Our principle tools are a variation on a theorem of Choquet [C]
concerning the distribution of random sets, and a generalization of the
classical inverse (or projective) limit theorem. These methods actually
apply to stochastic processes whose random domain A is a subset of an
arbitrary parameter space T.
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Our investigation was inspired by a recent paper of Hu [H] on stochastic
processes with random parameter domains. One of the main results, the
"inverse limit" Theorem 3.1, generalizes Theorem I’ of [H].

1. 2. Let (Q, fF, P) be a measure space and for each 03C9~03A9 let ,d (co) be
a non-empty open convex subset of We say that A(.) is a random

open convex set (ROC) for every non-empty finite set

Suppose that a measurable space (E~, 8t) is given for each t E d, and
that a point is specified for each We say that

Xt(ro) is a tochastic process with random domain d if, for each t E ~d,
BeSt,

and if each of the one-dimensional distributions

is a a-finite measure.

For each non-empty set G c IRd we put

The finite dimensional distributions of X = (X t : t are defined by

Here ... , tn ~ is a non-empty finite subset of (~d and

... , Obviously each m~ is a a-finite measure on (E~, ~~).
In the sequel [A] denotes the closed convex hull of a set A c !Rd. Recall

that a measurable space (E, 8), is a U-space if E is a topological space
homeomorphic to a universally measurable subset of a compact metric
space, and if 8 is the Borel o-field on E.

THEOREM 1. 1. - Suppose that (Er, ~t) is a U-space for each t E A

collection {m: A a non-empty finite subset of of a-finite measures is
the system of finite dimensional distributions of a stochastic process

(Xr : t E A) with ROC domain 0 if and only if
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where A, I~’, are arbitrary non-empty finite subsets of and I fi denotes
the cardinality of fi.

s

(1 . 6) Remarks. - (a) The necessity of conditions ( 1. 3) and ( 1. 4) is

obvious. The necessity of ( 1. 5) follows from the inequality

(b) If d =1, then A is a random open interval ]a, [3[ and one needs to
check (1.5) only for r I =1 or 2. Indeed, assuming ( 1. 3) holds, each term
in ( 1. 5) corresponding to a r with ( r ( >_ 3 has a companion term of equal
magnitude and opposite sign ; these terms cancel by pairs leaving only the
terms with _ ~, 1, or 2. As mentioned previously, when d = l, Theo-
rem 1. 1 can be proved by the arguments in [K1]. Another proof was
given in [H].

1. 3. Let (Xt : be a stochastic process with ROC domain A c f~d,
defined on a measure space (Q, ~, P). Fix a non-empty finite set A 
restrict P to 03A9={03C9:0394(03C9) ~ }, and let  denote the image measure
under the mapping from Q~ to ( C~ x E~) . Here C~ is
the class of open convex subsets of f~d which contain A.
The proof of Theorem 1.1 consists of two parts: starting from the

system { m~ ~ we construct a family ~ ~,~ ~ ; then on an appropriate sample
space Q (endowed with mappings A(m), we construct a

measure P such that the measures ~.~ derive from (X~ : as in the first

paragraph of this subsection. The first step is based on Theorem 2.1

which characterizes the "finite dimensional distributions" of a ROC A.
The second step is accomplished by noting that ~ ~~ ~ is a "projective
system" of measures indexed by the partially ordered class of finite subsets
of ~d ; an "inverse limit" theorem (Theorem 3 . 1) allows us to conclude
that the are the "projections" of a single measure P. In rough outline,
this construction was suggested by Hu’s treatment of Theorem 1. 1 in the
case d= 1.

In section 2 we investigate ROCs and we construct the measures ~.~. In
section 3 our inverse limit Theorem 3. 1 is stated and used to finish the
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proof of Theorem 1.1. We also consider several variations of Theo-

rem 1.1. The proof of Theorem 3. 1 is given in section 4.

1.4. NOTATION. - N denotes the set of natural numbers ( 1, 2, ... ~ .
If ~ is a class of subsets of a set A, and if B c A, then

denotes the trace of j~ on B. If (A, ~ ) and
(B, ~) are measurable spaces then j~ denotes Cartesian product while
j~ Q ~ is the a-field generated by d x ~.

2. RANDOM OPEN CONVEX SETS

2.1. Let C denote the class of open convex subsets of and let ~

denote the a-field of subsets of C generated by the events 
where K ranges over the class Jf of compact subsets of It can be

shown (see e. g. Matheron [Ma]) that ~ is the Borel a-field corresponding
to a separable metrizable topology on C. Let J denote the class of

nonempty finite subsets of and set ~o = ~ U ~ ~ ~ . Recall that for
A c [A] denotes the closed convex hull of A.
THEOREM 2. 2. - Let M : [0, 1] satisfy the conditions:

(Here A, An, r are arbitrary elements of J and ( 0393 denotes the cardinality
of r.) Then there exists a unique probability measure P on (C, ~) such that

Conversely, if P is any probability measure on (C, then M (A) defined
by (2. 5) satisfies (2. 1) through (2. 4).

Proof - The necessity of (2. 1)-(2.4) follows in the same way as that
of ( 1. 3)-( 1. 5). For the sufficiency first note that (2 . 2) [resp. (2 . 4)] implies
the apparently stronger condition (2.6) [resp. (2.7)]:
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where the sum in ( 2 . 7) extends over all of

{1,2, ... , n ~ , and n >_ 1 is arbitrary. Indeed ( 2 . 2) implies ( 2 . 6) by an
obvious induction. To see that (2.4). implies (2. 7) first note that (2. 7)
reduces to ( 2 . 4) when Ai, ... , An are singletons ; in general the sum in
(2. 7) is, for a fixed Ao, a symmetric function of Al, ... , A,~, and if Fn
denotes this sum then

so (2 . 7) also follows by induction. Taking n =1 in (2 . 7) we see that M is
a decreasing function.
We construct the measure P on (C, W) by applying Choquet’s theorem

concerning capacities which are "alternating of order 00". To this end we
define N : [0, 1] which satisfies the analogs of (2. 3), (2. 6), (2 . 7), and
which agrees with M on For K~K set

It is clear that

Moreover, N(A)=M(A) if because of (2 . 6). If Kn!K then
[Kn] ], [K], and if U ~ [K], U open, then U ~ [Kn] for all large n. These

observations coupled with (2. 3) and the monotonicity of M lead easily to

Using (2. 3) and (2. 8) one now checks that

where the sum is over all subsets {i1, ... , ik} of {1,2, ..., n}, and 
is arbitrary.
The inequalities (2. 9) and the continuity property (2. 8) amount to the

statement that T -1- N is a Choquet % -capacity, alternating of order
oo. (See [C] or [Ma].) Let F denote the class of closed subsets of [Rd endowed
with the 03C3-field R (IF) generated by the 
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By Choquet’s theorem ([C], [Ma, p. 30]) there is a unique probability
measure Po on (F, ~ (IF)) such that

Let Pi denote the image law of Po under the mapping from

(F, to {~, ~ (~)), where G is the class of open subsets of ~a

and 81 (G) is generated G ~ K ~ , K E Jf. Clearly
K) = N (K). Let A, rEf and let G~r denote the set of those

Ge G such that G =3 A, G ~ A U r. Because of ( 2 . 6) we have P1 (G Ar) = 0
whenever [A] = [A U r]. It follows that Pl is carried by C. Since

we obtain the desired probability P by restricting Pl to
(C, ~). The uniqueness of P follow easily from the uniqueness in Choquet’s
theorem and our construction of N. D

2 . 2. Recall that AEf. The measures ~.~ on

C~ x E~ described in subsection 1. 3 satisfy the relation

Conversely, starting from a system {m} satisfying ( 1. 3)-( 1. 5), we can
construct a system { satisfying (2 .11). To this end fix A E J and B E ~~
such that 0  m ~ ( B)  oo . The function

satisfies (2 . 1), and it follows from ( 1. 3)-( 1. 5) that M satisfies (2.2)-(2.4)
as well. By Theorem 2 . 1 there is a unique probability QA, B on (C, ~)
such that QA,B(r)=M(r), rEfo. Clearly is concentrated on C~.
For each D n C~ and each BE with mA (B)  oo, we put

Evidently ~,~ (. x B) is a finite measure on ~~. By the uniqueness part of
Theorem 2.1, if the Bi are disjoint and

Bt)  oo. Since m is «-finite, for each x . ) can be
uniquely extended to a a-finite measure on ~~. Since (E~, ~~) is a U-

space, it follows from a result of Morando [Mo] that there is a unique
extension of ~,~ to a measure on S~~ Q The reader can check that

(2.11) (without the middle term) holds for each 
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3. A GENERAL INVERSE LIMIT THEOREM

AND ITS APPLICATIONS

3.1. Our objective now is to construct a stochastic process {Xr {w), P)
with ROC domain ~ ( ~), such that

for all F e ~~, where the measures ~,A are defined in subsec-
tion 2. 2. The sample space Q can be chosen in a canonical way: Q is
the collection of all functions co defined on a nonempty open convex

domain 0394(03C9) c IRd and such that 03C9(t)~Et for each As usual we

set Xt (t~) = c~ (t) for Our problem is reduced to constructing a
measure P on Q subject to condition (3.1).
To this end we invoke a general inverse limit theorem which deals with

the following objects:
3 . 1. A. A partially ordered index set (J, _ ) such that for each A, rEf

the least upper bound A v r exists. [In our situation,  is inclusion and v
is the union of sets.]

3 . 1. B. A measurable space (C, ~), and a such

that U {CA : We n C~. For
x~C put J(x)={~J : x~C}. We say that f c J determines x~C if
for each y E C with J (y) ~ ~ (x) there exists A E ~ with x E C~. We
assume that there is a countable set ~’ c J such that for each x E C, ~’
determines x. [In our situation C is the class of nonempty open convex
subsets of and L is the a-field on C described in Theorem 2.1. Of

course We leave it to the reader to exhibit a set y

as above.]
3 . 1. C. A mapping A from a set Q to C. For AEJ we set

3 . 1. D. Measurable spaces (E~, ~~), AEJ, which we assume to be
U-spaces.

3 . 1. E. Mappings X~ : S~~ --~ E~, 
3 . 1. F. Mappings E ~ Er, r  A. We assume that is 

measurable and surjective, and that

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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[In the context of Theorem 1.1, 1tAr is the natural restriction mapping
from En to Er.]

3.1. G. Measures on 0 ~n such that

We assume that for each A there is a sequence {Dn x c x with

(D~ x Fn)  oo for all n. [In our situation

(3.4) follows easily from (2. 11).]
Finally, we need the following technical condition; see section 5 for a

discussion of this condition. Recall that a sequence { x" ~ from a directed
set (D, _ ) is cofinal if for each y~D there is an n such that 

3 .1. H. For each xeC, each sequence A ( 1) _ A {2) _ ... from f(x)
which is cofinal in some set ~ which determines x, each sequence

such that there is a

point 03C9~03A9 such that A(w)=x, [This condition is

trivially satisfied in the context of Theorem 1. l.]
Theorem 1.1 follows immediately from
THEOREM 3 . 1. - Under hypotheses 3 . 1. A-3. 1. H there exists a measure

P on Q such that for all F E ~~,

The domain of P is the 03C3-ring generated by the events on the left side of
(3. 5), and P is the unique measure on this domain satisfying (3. 5). Moreover,
P is a-finite.

If each Cn is a singleton, then each space Cn x E~, can be identified
with E~. In this case (3.4) means that for r _ A and we have
a generalization of the classical inverse limit theorem; see [DM, III-53].
Suppose that for each x E C there exists y E C such 

(This is certainly the case in the context of Theorem 1. 1 ) . Then by 3 . 1. B
we must have since J’ is countable it follows that Q

is an element of the o-ring described in Theorem 3 . 1. Said a-ring is thus
a a-field in this case.

3.2. Markov processes. Theorem 1. 1 can be used to construct Markov

processes with random times of birth and death but the paths of a process
so constructed enjoy no regularity properties. If one desires a Markov
process with, for example, right continuous paths, then a slightly different
application of Theorem 3. 1 must be made. We restrict our attention to
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the case of right continuous paths, but it will be obvious that quite similar
considerations apply to the cases of continuous paths, cadlag paths, etc.

Let E be a topological space homeomorphic to a Borel subset of a
compact metric space, with Borel sets ~; let a ~ E be a cemetary point,
and let Q denote the space of paths 00 : which are E-valued

and right continuous on some nonempty open interval A ((0) = ]a (c~)[
and which take the value a outside of A ( c~) . Let Y r ( c~) _ ~ ( t), t E f~, co E s2,
and let ~ _ ~ ~ Yt : t E f~ ~. Then (Q, ~ ) is a U-space (see [DM, III]). We
shall consider measures P on (Q, ~ ) under which the process (Y t : t E R)
is a Markov process.

Let (P; : s  t) be a nonhomogeneous transition function: each P; is a
subMarkov kernel on ( E, 8), and for We say
that a measure P on (Q, ~) is Markovian with transition function Pt if ,

and

for tl  t2  ... tn, Note that

A family { vt : t E of (r-finite measures which satisfies (3 . 8) is called an
entrance rule for Pr. Conversely, each entrance rule corresponds to some
Markovian measure P, at least under the following regularity hypothesis:

3 . 2 . A. For each S E [R and x E E there exists a probability measure Ps, x
such that for s  t 1  t2  ...  tn

THEOREM 3 . 2. - be an entrance rule for Pt and assume that
3. 2. A holds. Then there is a unique measure P on (Q, ~ ) such that (3. 7)
holds. Moreover, P is necessarily 03C3-finite.

Proof - We will apply Theorem 3 . 1 to the present situation, following
the notational scheme laid down in 3 . 1. A-3 . 1. H. We take the index set

J to be the class of compact intervals ordered by inclusion; if A = [a, b],
r = [c, d], then A v r=[min(a, c), max (b, d)]. For AEJ we take

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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and we identify Cn, the class of open subin-

tervals of R containing A = [a, b], with the quadrant
We take ~n to be the natural

Borel field on Hn. Let En denote the space of right continuous paths from
A to E, and let be the a-field on En generated by the coordinate
mappings. We take Xn : QA -+ En, 1tA, r : En --~ Er to be the natural restric-
tion mappings. The reader can easily check that with these choices 3 . 1. A-
3.1. F are satisfied. (Take J’ in 3. 1. B to be the class of those intervals
in J with rational endpoints.) If x, A (n), y" are as in 3.1. H, then clearly
there is a unique path 00 E Q such that d (03C9) = x and 03C9 In (n) = Yn for all n E N.
It remains to construct the measures ~n subject to 3 . 1. G.
For an interval I c R we let Fix A = [a, b] and B~E

with va (B)  oo. Making the obvious identifications, for any s  a, b _ t we
can regard Ps, x restricted to ~ ( A) n ~ t  ~i ~ as a measure on 
Thus, for s _ a, b _ t, we may define

where a[ is arbitrary in (3.10). The right side of ( 3 . 10) does not
depend on u because of (3.9). Clearly t --~ M ( s, t, F) is decreasing and
right continuous on [b, + oo [. Also, as It

follows that s -~ M (s, t, F) is increasing and left continuous on ] - oo, a].
Finally, M ( s, t, F)  va ( B)  oo and so from ( 3 . 10), (3 . 11) we can deduce

Recalling our identification of C~ with H~, and taking note of Remark
(1 . 6-b), we can argue as in subsection 2 . 2 to produce a measure on

~~ @ such that

where T = [s, t] ~ A = [a, b]. Since vp is a a-finite, it is clear from (3.12)
that ~,~ satisfies the o-finiteness hypothesis in 3. 1. G. The relation (3 . 4)
follows from (3.9)-(3.12). Clearly ~ coincides with the o-ring described
in Theorem 3 . 1 (see the remark following Theorem 3 . 1). By Theorem 3.1
there exists a unique measure P (necessarily a-finite) on (Q, ff) such that
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We leave it to the reader to verify (3.7), using ( 3 . 9) -( 3 . 13) . D

3.3. Continuous processes on random open domains. Now we are inter-

ested in the case where A(o) is a nonempty open subset of a locally
compact, second countable Hausdorff space T, and t --~ is a continu-

ous mapping from to R. We let J denote the class of nonempty
compact subsets of T (ordered by inclusion), and for ~J we let E
denote the space of continuous paths from A to The Borel sets in E~
are denoted ~~. ~ A, then denotes the restriction of co to A.

We put

where P is a measure whose domain contains the events on the right side
of (3. 15). For r  A (both in J) we let 03C00393 denote the natural restriction

mapping from E~ to Er. It is easy to see that

and that for Ao, At, ..., 

where the sum extends over all subsets {i1, ..., ..., n}.
THEOREM 3 . 3. - A E ~ ~ be a family of a-finite measures [m~

a measure on (E~, ~~)] satisfying (3. 16) and (3. 17). Then there exists a
continuous ~-valued stochastic process (Xt (c~), P) with a random open
domain 0 (c~), such that (3 . 15) holds.

Remark. - If T = then 4 (~) is convex (a. s. P) if and only if

for every pair A, r EJ such that [A U r] = [A].
Theorem 3. 3 follows from Choquet’s theorem and Theorem 3. 1 in

much the same way as Theorem 1. 1. We leave to the reader the details
of the proof, contenting ourselves with a few remarks. Let C denote the
class of nonempty open subsets of T, and let ~ be the d-field on C

generated by the events

Annales de I’Institut Henri Poincaré - Probabilités et Statistiques
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If ~ is a countable base for the topology of T consisting of relatively
compact open sets, then 3 . 1. B holds with ~’ _ ~ U : U E ~ ~. The fact
that each is surjective (3 .1. F) follows from Tietze’s extension theorem.
Hypothesis 3. 1. H is automatically satisfied (see subsection 5. 4).

Remark. - In Theorem 3. 3 the state space R can be replaced by a
topological space E with the property that any continuous mapping, of a
compact subset of a compact metric space K, into E, admits a continuous
extension to all of K.

4. PROOF OF THE

GENERAL INVERSE LIMIT THEOREM

4.1. We begin with the following
LEMMA 4.1. - For each AEf, the mapping from

nA to Cn x En, is surjective.

Proof - Fix ~J, XECA, YAEEA. Let J’ be as in 3.1. B and let J
denote the v -stabilization of Since J’

determines x, so does ~. Clearly there exists an increasing sequence
{A (n): c f which is cofinal in ~. By 3.1. F, each r, is surjective
and so we can choose inductively a sequence with 

and By 3.1. H there exists an 

Clearly (0 (co), as

required. D
Now note that the sets

form a semi ring ~/ in Q. The first step in the proof is to define a function
[0, + oo] such that

where To justify (4.1) we need to verify that if A has a
second representation where F’ E ~~,, then
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If A=0, then (4.2) follows trivially from Lemma 4.1. If A 5~ 0, then
A c Q~ = where r=A v A’. By ( 3. 3)

and so D = D’, F’ by Lemma 4.1. Relation (4.2) now follows
from (3.4).
Thus p. is well-defined on A by (4.1). It is easy to check that J.1 is

additive on d. Moreover, by 3.1. G, each A ~A is contained in a countable
union of sets from .91 with finite ~ measure (i. e., ~. is a-finite on d).

4.2. By a classical theorem of measure theory (see 3.13, Theorem A of
[Ha]), the proof will be completed once we show that J.1 is a-additive
on d. Our proof of this point follows in outline an argument of Hu [H].
We fix a sequence {Ai : of nonempty disjoint sets from .91 with

union AoEd. Then for each there is an index and
sets (D, x Fi) E ~n (i) x ~n tt~ such that Ai = ~0 E D~, Xn (i) E FJ. Now

Ai c Ao c ~n ~o~ and so Ai c Szn (o~ if i > 1. Replacing A (i) by
A (i) v A(0), and Fi by (F;) if necessary, we assume without
loss of generality that A (i) >_ A(0) for i >_ 1. If x E Do then we can choose
y~F0 (else A0=~); by Lemma 4.1 there exists an o 

oo

Thus 03C9~A0=~ A i, so for some In
i= 1

00 00

other words, Do c U DI. Similary, Do:::> U D~.
i= I t= 1

We need two more lemmas, which we prove in the next subsection.
LEMMA 4.2. - There exists a probability measure v on (Cn ~o~, ~n ~o>)~ a

family PA (x, dy), A > A (0) of Markov kernels from (Cn, to (En, ~n),
and strictly positive functions fn E ~n Qx ~n such that

where A >_ A (0), 
LEMMA 4.3. - There is a v-null set B ~o~ such that for x E 

where I

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Let us now integrate both sides of (4.4) against 1D0 (x) v (dx). On the
left side, because of (4.3), we obtain x On the right
side we obtain

Thus and so Jl is a-additive on s~. The proof of
i >_ 1

Theorem 3.1 is complete.

4.3. It remains to prove Lemmas 4.2 and 4.3.

Proof of Lemma 4.2. - By 3. l. G, is 03C3-finite and so we may
choose a strictly positive function such that

~.n (0) ( f) =1. probability measure v on ~o~, ~o~) bY setting
For define by

y)=f(0)(x, 03C0, A (o) y), and note that f> 0 on Cn x By ( 3.4),
(f)~ (o) (A (o)) =1. The measure - is thus a subprobabil-
ity measure on It follows from (3.4) that for fixed A > A(0),

the measure (. x F) is dominated by v on Since (En, is a

U-space, standard techniques (see [DM], [G]) show that there are Markov
kernels dy) satisfying (4.3). D

Proof of Lemma 4.3. - First note that since ~n is countably generated,
it follows from (3.4) that if A (0)  r  A then there is a v-null set 
such that for x E 

Let y be as in 3.1. B and let ~ denote the v -stabilization of

{r v A (i) : i > 0~ U ~A (i) : i > o~; clearly ~ is countable. Let

B = U (Do r1 BAr: A, r  A~ so that B ~o~, B ~ Do, v (B) =0.
Fix x E DoBB and put f (x) = Then ~ (x) determines x,

and (4.5) holds whenever r  A both lie in ~ (x). Since ~ (x) has a cofinal
sequence, the classical inverse limit theorem ([DM, III-53]) applies to

the inverse system {03C1(x, .), under the mappings 1tAr. More
precisely, let E consist of those elements (y~ : of the product
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space x ~E~ : which satisfy for all A, with

r  A. Let qA: E --> E~ denote the coordinate projection and put
Then there is a unique probability measure p~ on

(E, ~) such that

Recall that is the disjoint union of

For >_ 1: put Then

and this is a disjoint union. Indeed, if is

a point of Bi ~ Bj (i ~j; i, j E I (x)), then by 3.1.H there exists 03C9~03A9 with

But then 03C9~Ai~Aj which contradicts
0. By a similar argument we have Bo = U {Bi: i~I (x)}. Finally,

note that there is a uniquely determined ~ -measurable function

g : E-+ ]0, +oo[ such that y) for any 
Since p~ is c-additive we have

Now (4.4) follows immediately from (4.7) and (4.6). D

5. CONCLUDING REMARKS

5.1. Theorem 2.1 is a refinement of a theorem of Choquet [C] which
characterizes the distributions of random closed subsets of locally compact
Hausdorff spaces. Choquet’s theorem forms the foundation of Matheron’s
theory of random sets. ( S ee [Ma].) In particular Theorem 4-2-1 of [Ma]
gives necessary and sufficient conditions for a random closed subset of (~d
to be convex. A more general theory of random sets has been developed
by Kendall [Ke].

5.2. Theorem 1.1 implies a theorem of Kuznetsov [K1], mentioned

already in section 1.
Theorem 3.2 (under an additional hypothesis on P~) has been proved

by quite different methods by Getoor and Glover [GG, (3.5)].
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5.3. Under certain conditions the hypothesis 3.1. H of Theorem 3.1 can
be dropped. For instance, if the elements of the index set J are subsets of
some set T (the order  on J being inclusion), if each 8 A) is the

product of spaces (Et, 8t), t E A, and if is the natural projection, then
3.1. H is automatically satisfied. In this case the assumption in 3.1. B

concerning J’ can also be dropped, and Theorem 3.1 is essentially Theo-
rem 1’ of [H].

5.4. In most cases of interest it is possible, starting from 3.1. A, 3.1. B,
3.1. D, 3.1. F [but not (3.3)], and 3 .1. G, to construct Q, A, X n so that 3.1. C,
3.1. H, and (3.3) hold. For instance, suppose that we strengthen the second
part of 3.1. B by assuming the existence of a countable set V c J such
that J’ (~ is cofinal in J (x) for each x E C. For fixed x E C let

E(x) denote the set of elements of the product space
such that 03C00393 y=y0393 for all r, with r  A.

Now put

Clearly 3.1. C and (3.3) are satisfied, and 3.1.H follows easily from our
assumption regarding ~’.
A class J’ as above exists, for example, if C is the class of nonempty

open subsets of a locally compact, second countable Hausdorff space T,
if ~ is the class if nonempty compact subsets of T (ordered by inclusion),
and if
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