@article{AIHPB_1988__24_4_491_0, author = {Mason, David M.}, title = {A strong invariance theorem for the tail empirical process}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {491--506}, publisher = {Gauthier-Villars}, volume = {24}, number = {4}, year = {1988}, mrnumber = {978022}, zbl = {0664.60038}, language = {en}, url = {http://archive.numdam.org/item/AIHPB_1988__24_4_491_0/} }
TY - JOUR AU - Mason, David M. TI - A strong invariance theorem for the tail empirical process JO - Annales de l'I.H.P. Probabilités et statistiques PY - 1988 SP - 491 EP - 506 VL - 24 IS - 4 PB - Gauthier-Villars UR - http://archive.numdam.org/item/AIHPB_1988__24_4_491_0/ LA - en ID - AIHPB_1988__24_4_491_0 ER -
Mason, David M. A strong invariance theorem for the tail empirical process. Annales de l'I.H.P. Probabilités et statistiques, Tome 24 (1988) no. 4, pp. 491-506. http://archive.numdam.org/item/AIHPB_1988__24_4_491_0/
Limit Theorem for Real and Banach Valued Random Variables, John Wiley & Sons, New York, 1980. | Zbl
and ,Distribution of Intermediate Order Statistics, Ann. Probab., Vol. 13, 1985, pp. 469-477. | MR | Zbl
,Strong Approximations in Probability and Statistics, Academic Press, New York, Akadémai Kiadó;;;;, Budapest, 1981. | MR | Zbl
and ,On the Asymptotic Distribution of Weighted Uniform Empirical and Quantile Processes in the Middle and on the Tails, Stochastic Process. Appl., Vol. 21, 1985, pp. 119-132. | MR | Zbl
and ,Laws of the Iterated Logarithm in the Tails for Weighted Uniform Empirical Processes, Ann. Probab., Vol. 16, 1988 a, pp. 126-141. | MR | Zbl
and ,Strong Limit Theorems for Weighted Quantile Processes, Ann. Probab., 1988 b (to appear). | MR | Zbl
and ,An Introduction to Probability Theory and its Applications, Vol. 1, Third Ed., Wiley, New York, 1968. | MR | Zbl
,The Law of Iterated Logarithm for Empirical Distributions, Ann. Math. Statist., Vol. 42, 1971, pp. 607-615. | MR | Zbl
,Wahrscheinlichkeitstheorie, Springer-Verlag, Berlin, Heidelberg, New York, 1977. | MR | Zbl
and ,Law of the Iterated Logarithm for Weighted Empirical Distributions, Ann. Probab., Vol. 3, 1975, pp. 762-772. | MR | Zbl
,Analogues for Sample Quantiles when pn↓0, Proceedings Sixth Berkeley Symp. Math. Statist. Probab., Vol. I, 1972, pp. 227-244, Univ. of California Press, Berkeley, Los Angeles. | MR | Zbl
,An Approximation of Partial Sums of Independent rv's and the Sample df, I, Z. Wahrsch. verw. Gebiete, Vol. 32, 1975, pp. 111-131. | MR | Zbl
, and ,Spaces and the Law of the Iterated Logarithm for Gaussian Processes, Z. Wahrsch. verw. Gebiete, Vol. 29, 1974, pp. 7-19. | MR | Zbl
, HilbertApproximations of Partial Sums of i.i.d.r.v.s. when the Summands Have Only Two Moments, Z. Wahrsch. verw. Gebiete, Vol. 35, 1976, pp. 221-229. | MR | Zbl
,Sums of Extreme Value Processes, Preprint, 1988.
,A Refinement of the KMT Inequality for the Uniform Empirical Process, Ann. Probab., Vol. 15, 1987, pp. 871-884. | MR | Zbl
and ,Sample Functions of the N-Parameter Wiener Process, Ann. Probab., Vol. 1, 1973, pp. 138-163. | MR | Zbl
and ,Invariance Principles for Martingales and Sums of Independent Random Variables, Math. Z., Vol. 192, 1986, pp. 253-264. | MR | Zbl
and ,Empirical Processes with Applications to Statistics, John Wiley & Sons, New York, 1986.
and ,Some Strassen-Type Laws of the Iterated Logarithm for Multiparameter Stochastic Processes with Independent Increments, Ann. Probab., Vol. 1, 1973, pp. 272- 296. | MR | Zbl
,