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ABSTRACT. - The one dimensional n.n. simple exclusion process with
generator E - 2 Lo + E -1 La, E > o, is considered, Lo and LQ being respectively
the generators of the symmetric and totally asymmetric simple exclusion
processes. Propagation of chaos and convergence to the Burgers equation
with viscosity are proven in the limit when 8 goes to zero. The density
fluctuation field is shown to converge to a generalized Ornstein Uhlenbeck
process with mean zero. The time asymptotic covariance kernel is explicitly
computed for traveling wave profiles and the result indicates that the
shock profile is stable while its space location fluctuates around its average
position like a brownian motion. Its diffusion coefficient is explicitly
computed.
Key words : Exclusion process, hydrodynamic limit, Burgers equation, shock waves.

RESUME. - On considere le processus d’exclusion simple a de plus
proches voisins de generateur L~ = ~-1 Lo + La, ou Lo et La sont respective-
ment les générateurs des processus d’exclusion simple symetrique et totale-
ment asymetrique. La propagation du chaos et la convergence vers 1’equa-
tion de Burgers avec viscosite sont demontres pour e - 0. On montre que
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Ie champ de fluctuation de la densité converge vers un processus generalise
de Ornstein Uhlenbeck, de moyenne 0. La covariance asymptotique est
calculee explicitement pour des profils d’ onde en mouvement et les resultats
indiquent que le profil du choc est stable lorsque sa position fluctue comme
un brownien. Autour de sa position moyenne, son coefficient de diffusion
est calcule explicitement.

INTRODUCTION

The one dimensional Burgers equation

(1.1)

r E R, t >_ 0, ~, >_ 0, is one of the simplest equations where the
growth and the propagation of shock waves can be observed, cf for
instance Smoller, [26], and references quoted in. Non linear PDE’s,
like (1.1), describes to some extent and in particular situations the macro-
scopic behavior and the collective phenomena exhibited by several model
systems, like cellular automata and stochastic interacting particle systems.
In the last years such systems have been extensively studied, cellular
automata for very fast computer simulations (cf for instance [21], where
eq. ( 1. 1) was considered) and stochastic interacting particle systems for
the possibility of a mathematically rigorous analysis, which seems beyond
the present techniques for more realistic particles models of physical fluids.
The use of stochastic systems in the study of (1.1) goes back to McKean,

[22], and carried out by Calderoni and Pulvirenti, [6], and Sznitman, [28],
for systems of suitably interacting Brownian particles. In this paper we
shall consider the exclusion process. The relation between such proces and

(1.1) with ~, = 0 is well known, cf [25], [20], [5], [11], [9], and [2], [29],
[3] where a zero range process isomorphic to the exclusion process is
considered.
The derivation of ( 1.1) with ~, > 0 starting from the exclusion process is

in a sense easier. In fact for drift and diffusion to have same strength,
like in ( 1. 1), one must suitably "weaken" the asymmetry in the exclusion
process which can then be studied as a "perturbation" of the symmetric
one. This can be done by applying general methods like the Fritz’s

technique, [14], cf. [15]. Alternatively one can use the Guo Papanicolaou
and Varadhan approach, [17], which has the advantage of expliciting the
connection with the large deviations theory. The derivation of (1.1) with

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques



3WEAKLY ASYMMETRIC EXCLUSION

such techniques has been recently carried out in [19]. The simplest deriva-
tion of (1.1) is in our opinion due to Gartner [16] who considers a specific
weakly asymmetric simple exclusion process and for this he is able to

exploit at the particles’ level the transformation which maps (1.1) into a
linear differential equation. To conclude we mention that the steady state
solutions to ( 1.1) can be derived directly, cf [8], and that there is an

interesting relation between (1.1) and some interface evolution problem,
cf Spohn [27].

In this paper we rederive (1.1) from the weakly asymmetric simple
exclusion process, we refer to the next section for precise definitions and
results.

We use the correlation functions technique, introducing some special
correlation functions which solve a simplified hierarchy of equations and
allow us to overcome the short time limitations usually present in the
analysis of the hierarchy in the Grad-Boltzmann limit. Our approach is
undoubtly lengthier but it has the advantage of providing very detailed
information on the process, actually more than what needed for proving
( 1.1). This is not purely academic. Our aim is to go further in the analysis
of the weakly asymmetric simple exclusion process beyond establishing
(1.1) and to study the particle model in a much longer time scale than
the one where (1.1) is proven. In particular we want to know at the
particle level the stability properties of the traveling wave solutions to
(1.1). How long does the shock move keeping its shape ? according to
(1.1) it is stationary, is that true for the microscopic model ? Should we
add to (1.1) correcting terms to catch the true limiting behavior ? which
ones in the case ? the problem looks like the following. Consider X to be
the space of all density profiles. Let peX be a traveling wave solution to
(1.1). Hence, as it is well known, the shape of p is determined by two
parameters p- and p+ which denote the asymptotic densities to the left
resp. right of the origin, p _  p + (the drift in the process is directed toward
the right). p is then completely determined by fixing its location in space.
Call finally M (p) the manifold in X obtained by rigidly shifting in all

possible ways the profile p. Any such manifold is invariant under the
evolution described by (1.1) and each point in the manifold moves with
constant speed c =1- p _ - p + . One might argue that the state of the

particle model is only approximately described by the density profile of a
traveling wave p, hence to a better approximation it should be represented
in X by some "thin tube of profiles". In the long time regime such tube
might be amplified and become macroscopic. What really happens is hard
to decide by looking at (1.1) alone. From one side such equation seems
to indicate that each traveling wave p is stable except for a neutral

direction, that of M ( p). This would suggest that the only effect at long
time should be a delocalization of the solution inside M ( p). However such
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claim comes from the stability analysis w. r. t. localized initial perturb-
ations, a change in the limiting densities does in fact produce a transition
to some new manifold M and such disturbance would never vanish. It is
not clear at all, by the way ( 1. 1) is derived, if the particle system’s
evolution is in any sense related to what predicted by some stability
analysis for the macroscopic equation and, if such is the case, what is the
correct space where the stability problems should be considered.

Partial answers to such questions have been obtained for the asymmetric
simple exclusion, as we report below, for more details we refer to [24]. If
p- = 0 it has been proven, [29] and [9], that M ( p) is stable and that the

shock, moving with average speed c, fluctuates in space keeping the same
shape, its motion being brownian with diffusion coefficient D = c. Even
when p _ > 0 and c = 0 there are indications for the same behavior. Andjel
Bramson and Liggett [1] have in fact proven that asymptotically in time
the state of the system approaches a 1/2-1/2 mixture of the states with
densities p_ and p +, the left and right asymptotic densities at the shock,
just what should be if the profile were rigidly fluctuating with Brownian
motion. Finally we mention that a numerical analysis, [4], shows agreement
with the above behavior also in other cases.

Let us now return to the weakly asymmetric simple exclusion process.
The first step in analysing the stability of the shock is to look at the

density fluctuations and that is what we have done here: we have found
that the density fluctuation field (cf the next section for precise definitions
and results) converges to a generalized Ornstein-Uhlenbeck process with
zero mean. Its covariance kernel diverges when t - oo in the same way it
should if the shock profile were stable but fluctuating around its average
location like a Brownian with diffusion coefficient D. We have

computed D and we have checked that its value agrees with that found in
the asymmetric case for p_=0. We hope to complete the analysis of the
long time behavior of the shocks for the weakly asymmetric exclusion
process in a forthcoming paper.
We conclude this section by mentioning possible byproducts of our

analysis which may be interesting in their own. We could easily consider the
multidimensional case and quite arbitrary particles jumps, for notational
simplicity we have restricted ourselves to the one dimensional case and to
nearest neighbor jumps. We also have the possibility to derive equations
of the form

mER, r E R, f and V smooth real functions. The case V = 0 in ( 1. 2) is
obtained by adding to the symmetric generator of the simple exclusion a
small asymmetric perturbation described by the asymmetric generator of
a "speed change exclusion process", which then determines the form of f:
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5WEAKLY ASYMMETRIC EXCLUSION

To obtain the full equation ( 1. 2) we interpret particles and empty sites as
1 and -1 spins, respectively. We then add to the previous generator a
"small" generator describing local Glauber interactions among spins,
see [7] where the equation with f = 0 was derived. Our technique should
apply quite straightforwardly also to these cases, we are indebted to
Sznitman for very helpful discussions on these points. It is also worth

mentioning that we can study cases where the "weak" asymmetric part of
the generator of the simple exclusion is multiplied by a "slowly varying"
factor which may depend both on space and time.

In Section 2 we state the main definitions and results and in Sections 3
and 4 their proofs.

2. DEFINITIONS AND RESULTS

Let S~ _ ~ ~, be the set of all particles configuration. We denote by
r; a generic element of n, so ~ _ ~ ~ (x), For any E > 0 and any

cylinder function f on Q let

where

We denote by T£ (t) the Markov semigroup with pregenerator Lg, and
we call such process the weakly asymmetric simple exclusion process
(WASEP). We denote by TO(t) the Markov semigroup with generator Lo,
such process is called the symmetric simple exclusion process (SEP).
We shall use the following notation. p, v denote measures on (.) is

the expectation w. r. t. p while E~ - Jl(T£ denotes the expect-
ation of f w. r. t. the WA SEP with initial measure p. Sometimes we shall
simply write E~ ( f ).

2.1. THEOREM. - Let p be a smooth function on R with values in [0, 1].
For ~ > 0 let ~ be the product measure such that

(11 (x)) = p (E x). Then for any r E Rand t > 0 and uniformly in the compacts
ofRxR+
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where p solves

For any ~~03A9 define to be the solution of the following
equation

where P~ is the probability kernel of the semigroup TO (t). Therefore

PE (x, t |~) is the discrete approximation to (2 . 4), x and t being "micro-
scopic" variables in contrast to the macroscopic variables appearing in
(2. 4) : namely microscopic space (resp. time) is E -1 (resp. E - 2) times the
macroscopic space (resp. time). Define pg(x, as in (2. 5) with ~ (z) in
the first term in the r. h. s. replaced by (z)) = p(EZ) (cf Theorem 2 . 1).
Define for any t>O, n >_ 2 for any x --_ (xl, ..., where xl, ..., xn are
distinct sites,

and

2.2. PROPOSITION. - With the above notation and definitions, for any
n >_ I and T > 0 there is c such that for any r~

The above Proposition gives the key estimates for our analysis, all the
results we obtain are more or less straight corollaries of Proposition 2. 2.
In fact using such result it is possible to derive a stronger version of
Theorem 2.1 weakening the assumptions on the initial state. For instance
it is possible to consider a family such that for any cp E S (R)

Annales de 1’Institut Henri Poincaré - Probabilités et Statistiques
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and the same result as in Theorem 2.1 holds. We shall not discuss further
this kind of generalizations and proceed in our analysis.
Next we define the fluctuation fields. For cp as above and for ~.£ as in

Theorem 2. 1 we set

and let P" be the corresponding law on D(R+ -~S’(R)) induced by the
process with initial measure ~. We then have ,

2.3. THEOREM. 2014 The law P~ defined above converges weakly to the
law of a mean zero generalized Ornstein-Uhlenbeck process with covari-
ancc kernel C~(r, r’) determined by the equation

~C~~, r)

where Ct satisfies

Furthermore let p in Theorem 2.1 be a stationary shock wave solution
to (2. 4) such that

namely p ( r, t) = p (r - c t) where the speed c =1- p _ - p + . Then f or any r
and r’

where p’ is tthe first derivative of p and
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Notice that the different time covariance solves the linearized equation
[ef eq. (2.10)]. This is a general feature related to the validity of the
Fluctuation-Dissipation theorem and proven rigorously for several stochas-
tich interacting particle systems. The splitting of C* as in (2 . 10 b) appears
naturally when taking the expectation of the square of the fluctuation
field. The diagonal terms when expanding the square give rise to the 03B4-
term in (2 . 10 b). The other term Ct(r, r’) is a smooth function whose
evolution is again determined by the linearized Burgers equation to which
a term is added, the last term in (2 . 10 d) which is responsabile for the
linear growth of Ct as t - oo . To relate such a behaviour to what discussed
in the Introduction we argue as follows.

Let ~,E, r, t be the product measure such that

Theref ore is just the initial measure shifted by E -1 [ct + r]. Let

where 16, (dr) is the law at time t of a Brownian motion starting from 0 and
moving with diffusion coefficient E D, D being the same as in Theorem 2. 3.
Given cp E S (R) let cpt (r) = c~ (r + ct), then, obviously,

Therefore the true covariance of the WASEP is the same as that produced
by hE, t, hence as far as this computation is concerned it is like the initial
measure were only shifted in space by E -1 [ct + r], the law of r being 
The above motivates the conjecture that for any t > 0 and r

where the 1. h. s. denotes the law of the weakly asymmetric simple exclusion
at time E-3 t shifted in space by the integer part if the
initial measure is the same as at the end of Theorem 2. 3 and y~ is the
law of a Brownian motion with diffusion coefficient D.

3. SHORT TIME ESTIMATES

In this section we prove Proposition 2.2 for times t  s- ~ + ~, [3 > 0. We
start with Lemma 3. 1 where we derive an integral equation for the v-
functions defined in eqs. ( 2 . 6), ( 2 . 7) . To simplify notation we just write
vn (x, t) for either vn (x, t Ti) or v~ (x, t ~E); the statements below hold for
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both. We also define 1, as the set of all n-tuplets of ordered distinct
sites of Z, x = (xi, ... xn) denoting the generic element in N" and Ex the
expectation w. r. t. the SEP starting from x. 

~

where

and

We are using the following notation:

for x E zn, x (i) --_ xB{ xi} and x (i, j) -_- xB{ xi, xj} (3 . 3 a)
is the unit vector in the positive i-direction, i = l, ... , n.

~ is the sum over all disjoint pairs i and j in { 1, ..., n ~ (3. 3 b)
i, j

Vol. 25, n° 1-1989.



10 A. DE MASI et al.

Proof - By definition for any t > 0, 

We use (2. 2) and (2. 5) distinguishing the cases when particles are n. n.
from the others. We get terms containing products of the occupation
number functions 11 (correlation functions) with n, n+ 1, n-l and n - 2-
body. To recover the v functions we add and substract the missing 03C1~’s
and we get

For t >__ 0 let _vt be the following function defined on the subset

of configurations with n particles. If then

Vt (11) = vn (x, t) where n is the number of particles in the configuration 11
and x are their positions. Since vn is symmetric under permutations of the
Xi in x the above is well defined. For simplicity we identify the elements
of with points and write the first term in ( 3 . 5) as ( Lo v") (x, t).
It is easy to see that the second one is (R vn) (x, t). We consider next the
terms with Vn-1’ By adding and subtracting PE (xi, t) Vn-1 (x (j), t) we rewrite

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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the fourth sum in (3. 5) as a sum of a "gradient" of Vn-1 plus (x (j), t)
times ce, as defined in ( 3 . 2 d). The gradients of vn _ 1 are multiplied 
as defined in (3 . 2 c). From the above observations it follows that the time
derivative of vn (x, t) is equal to (Lo vn) (x, t) plus the other terms. Therefore
we can use the process with generator Lo to write an integral equation
for vn. We therefore get (3.1) since

3. 2. NOTATION. - We can interpret the right hand side of (3. 1 a) as the
expectation with respect to a process describing n labeled stirring particles
which starts from x move for a time t - s and then undergo a branching
process. [We are thinking of the degree of the v-function as a number of
particles, their positions being specified by the arguments of the v-

functions]. We recall that the stirring process is realized by independently
exchanging the occupation numbers at all pairs of nearest neighbor sites
after an exponential time of mean 2. The induced motion on the particles
is the SEP, if the labels of the particles are ignored.

Since W can be expressed as a linear combination of v-functions the
different terms are interpreted as the outcome of the branching. To describe
this structure we specify first of all the initial and the final number of
particles. So the terms appearing in R vn are all of "type (n, n)", those in
the first sum of ( 3 .1 b) are ( n, n + 1 ), the successive ones are ( n, n - 2),
(n, n-1) and (n, n) respectively. A finer description is needed to classify
the single terms in each type. We start with the ( n, n - 2) terms. We need
two more labels which denote the particles appearing in the characteristic
function in (3.1 b). Hence each of these terms is determined by the multi-
index ( n, n - 2, j, i). The ( n, terms are singled out by adding the
multi-index (j, i, c) where j as before, denote the particles involved
in the characteristic function appearing in (3.1 b) while 03C3 equals ± 1 or 0.
If a = 1 we are considering the first term with (x (j), s), the
term with vn _ 1 (x (i), s), if 03C3 = 0 the last term with v" _ 1 (x (j), s).
The terms of type (n, n) are divided into two classes. Those in the first

one are singled out by specifying a pair (j, i), cf (3 .1 b). The others come
from R vn. To classify them one needs the pair (i, ?). The first index, i,
labels a particle, cf (3 . 2 a), while ~ =1 refers to the first term in ( 3 . 2 a),
o = 2 to the second, ..., 6 = 5 to the fifth one.

Finally the (n, n+ 1) terms can be written as

Vol. 25, n° 1-1989.
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where the sum over ... , ik is over all the subset with k elements of the
set (1, ..., n). Therefore these terms are classified by the specification
( i 1, ..., ik, cr), where fi, ... , ik are as above and a =1 selects the first
term in the above sum while c = 2 the second one.

Therefore the branching process occurring at time ( t - s) describes births,
the ( n, n + 1) terms, deaths, the ( n, n - 2) and ( n, n -1 ) terms, as well as
terms with same number of particles, the (n, n) terms. In some of these
cases particles after the branching are displaced, and, as we shall see

below, it will be convenient to relabel some of the particles after the

branching. Of course new labels are needed for the newly born particles.
One more notation: to classify the various terms above we introduce a

label X which can take any of the multi-indexed values we have introduced
above to single out the terms in (3.1). Therefore a value of 03BB specifies
one of the terms in (3 . 1), in particular a v-function and a function of E, x
and a which multiplies the v-function. This function will be denoted as

s, 03BB). For instance if 03BB = (n, n - l, j, i, 0) then the corresponding d-
function is xi, s).

Because of the presence of the terms ( n, n + 1 ) the equation relating the
v-functions is an infinite hierarchy of equations: the expression for vn
involves Vn+1 which in turns involves Vn+2 and so on. By looking at times
smaller than E - 2 + ~, j3 > o, it is possible to control the above hierarchy.
This is a consequence of the integral in ( 3 . 1 a) : the time interval E - 2 + ~ is
"so short" that the successive iterates of ( 3 . 1 a) eventually become negligi-
ble. So we fix ~3 > 0 and the degree m of the v-function for which we want
to prove (2. 8). We then iterate (3 . 1 a) N times, where N depends on m
and fi in a way which will be specified later on. At most, therefore, there
will be m + N particles, but we may need to introduce other particles, at
most N, so that the set of necessary labels for all these particles is

(1, ..., m, m + 1, ..., 2 N). The first m labels are used for the initial m
particles, hereafter referred to as the "old particles"; then each new particle
appearing at a branching is named by using the next available label in the
above list. According to the particular branch that we consider we may
or may not use all the labels in the list. In particular no new label is
needed for all the ( n, n - 2), (n, n -1 ), (n, n, j, i) and ( n, n, i, ~ = 5) terms.
For all the other (n, n) terms we add an extra particle. For the term
(n, n, i, 1) the particle i is at Xi - 1 and the new particle is placed at Xi’ If
~ = 2 the new particle is placed at if 6 = 3 the i particle is at 
while the new particle is placed at xi. Finally if cr=4 the new particle is
placed at Xi+ 1.
For the ( n, n + 1 ) terms we always add 2 particles one at the beginning

of the cluster the other at its end, cf Notation 3. 2 above. One of them is
"real", i. e. it appears in the argument of the v-function, the other one is
fictitious.
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