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ABSTRACT. - The adaptative kernel estimate of a density function with
a data dependent bandwidth arising naturally as an empirical counterpart
of MSE-optimal parameter is dealt with. It is shown to be asymptotically
minimax in a family of densities having bounded second derivative in a
neighbourhood of 0. As a by-product a simple proof of Farell’s [4] result
on minimax bounds for density estimates is obtained.

Key words : Data dependent bandwidth, kernel estimator, mean square error, minimax
estimate.

RESUME. - On considère l’estimateur a noyau (adaptatif) d’une densité
construit pour minimiser asymptotiquement le risque quadratique en un
point. On prouve qu’il est minimax dans la famille des densités ayant une
dérivée seconde bornée au voisinage du point. Du même coup on trouve
une preuve simple des résultats de Farrell [4] basée sur l’inégalité de
Cramer-Rao.

Mots clés : Estimateur a noyau, fenêtre adaptative, risque quadratique, estimateur mini-
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144 J. BRETAGNOLLE AND J. MIELNICZUK

1. INTRODUCTION

Let Xi, ..., Xn be independent real random variables with a common
distribution function F and a density f with respect to Lebesgue measure
on R. Consider the problem of nonparametric estimation of 1(0) by means
of kernel estimate f ’h ( o) (Parzen [7]):

where kernel K integrates to 1 and h = h (n) is a smoothing parameter
(bandwidth). The natural bandwidth’s choice is provided by computation
of the mean square error R ( f, fh) = E f ( f (o) - fh (O)) 2; under standard

assumptions on K, ~ f , f ":

If f (o) ~ f " (o) ~ 0 minimizing main terms of ( 1. 2) yields ho satisfying

Replacing f(O) and f " (0) by some preliminary estimates we get a natural
empirical counterpart ho, n of ho with the following property of the resulting
adaptive estimate (Woodroofe [11])

(Recall that ho and hho depend on n. )
The problem of finding suitable modification of (1.1) which for fixed

density f will yield smaller mean square error attracted attention of many
authors. The proposed methods consist in bias reduction by considering
of so-called Parzen kernels (Parzen [7]), geometric extrapolation (Tarell
and Scott [10]) or choosing appropriately constructed bandwidths depend-
ing on data and point at which density is estimated (Abramson [1]). Such
procedures usually yield an estimate which is not a bona fide density
function although there exist methods to tackle with this problem
(cf Gajek [5]). All these results, however, leave unanswered the question
about possible improvement or kernel estimate uniformly over reasonable
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145ASYMPTOTIC MINIMAXITY OF ADAPTATIVE KERNEL ESTIMATE

family of densities. For example, Farrell’s [4] result shows that it is not

possible to get a better rate than n - 4~5 when considering the family ~ of
densities having bounded second derivative in a neighbourhood of 0 but
improvement of a constant is a priori possible. For the related problems
in the area of global estimation we refer to Bretagnolle and Huber [3].
We show however that the answer to this question is negative, namely
that the adaptive kernel estimator is asymptotically minimax in ~ . The
method is to construct a parametric family {f03B8} of densities intrinsically
joined with the kernel estimate fh’ for which {f03B8} oe W and

can be minorized for an arbitrary estimate In of f(0). As a by-product,
Farrell’s result on a minimax bound for density estimates is obtained.
Note. - Our referee pointed out to our attention two recent preprints

from Brown and Farrell [12] and from Donoho and Liu [13]: Estimating
f(0) in various families (slightly different of ours) they compare minimax
lower bounds (on all estimators) to minimax lower bounds on kernel
estimators or linear procedures. Brown and Farrell give tables for finite
samples.

2. THE CONSTRUCTION

From now on we will impose the following conditions on K and h (n):
(a) kernel K is a function integrating to 1;
(b) ~ x : K {x) ~ 0 ~ c [ - A, A] for some OAoo;

Let us observe that if K is nonnegative function such that (a) and (c)
hold, then (d) is automatically satisfied.

Let us denote fo an arbitrary smooth density equal to 1 on [ -1 i4, 1 /4}
and put Kh ( . ) = h -1 K ( . /h). From now on we will assume that 
so that the support of Kh is contained in [-1/4, 1/4]. We define eh by

(we center and reduce Kh wrt fo), thus

Vol. 25, n° 2-1989.



146 J. BRETAGNOLLE AND J. MIELNICZUK

Moreover, using (c) we get

Let 8 be some real number. If we assume ph (o) = 0 (a + h)/~, h _ 1/2,
is a density. We shall use parametric families

= f fe, ~ ~ 9 E O ~ where sup Ph (o) _ 1/2.
8

The density f03B8,h can be represented in the equivalent way

Let f~ = fn (X 1, ..., ~n) denote arbitrary estimate of f (o). The results are
based on the following

LEMMA. - Let robe (a - Taking at stage n 
where n = T > 1, we have

Proof - First we observe that, since nh (n) -~ oo by condition (e), the
condition on ph (0) is asymptotically fulfilled as lim sup ph (8) = 0.

n 9 E 9n

Further

thus the bias (o) - fe (0) = 0 ( (3 - oc)/~, h.
Moreover

and straightforward computations using (2. 1), (2.2) and (2. 3) give:

Thus using variance-squared bias decomposition of fh) we have

On the other hand, putting cp (8) = E~ ( f~ (o)) and using Cramer-Rao’s
bound,
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147ASYMPTOTIC MINIMAXITY OF ADAPTATIVE KERNEL ESTIMATE

where

(Cramer-Rao’s conditions are fullfilled since all expressions are polynomial
wrt 8). Denoting by R ( fn/fh) the ratio of the respective mean square errors
we have

Setting cp { 8) =1 + ~8 + ~, Y ( 8), we get, using ( 2 . 1 ) :

Substituting and

we obtain

Since lim then denoting by Ty the supremum of the
n e

above expression on [-T~~2, T1~2] it is enough to show that Ty is bounded
from below by the expressions given in (2. 4). Let us proceed by contradic-
tion. Assume that 1 and consider R defined by:

Since R (t) is convex, with R ( 1)  1-_ R (0), R’ (o) _- o, thus rxy- y’ 0.
Whence putting we obtain that z is nondecreasing.
Observe futher that y (x) _ -y ( - x) provides the same bound T. Thus, by
convexity, r is greater that the bound obtained for (y + y)/2. In other

words, we can assume y an odd function, whet, together with z(0)=0
implies for o _ x  T l2.
Consider first the case Note that r > ro. Since y is positive on

[0, it is sufficient to verify that inequality holds at x = Tl/2 where
(using y > 0) it is implied by ro T > (1 + ro T) ( 1- (ra T) -1).
For r = ro = 0 we argue as follows: if y (T1~2) _ 1- T -1~2 then in view of

there exists T1~2] such that y’ (s) _ T-1~2 -1/T and

1 -Y’ (s) ~ ~ - T’ 1~2~ D
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3. RESULTS

Let us define L) (y = k + cx, 0  a __ 1) the class of functions pos-
sessing k-th order derivative (k >_ 1) such that for -1/4 _ x, y _ 1/4

We will show that the lemma yields in straightforward manner the minimax
bounds on density estimates (Farrell [4]), see also theorem 5 .1 in Ibragi-
mov, Hasminskii [6]).

COROLLARY 1.

Proof - In order to prove the corollary 1 let us consider an arbitrary,
nonuniform kernel satisfying conditions (a) - (d) and such that Holder
condition (3 . 1) is satisfied by K(k) with constant C (K) and the power a.
It is easy to see that in this case _fR defined by (2. 3) satisfy

Thus if E>h and

then L). Under assumption nh2Y + 1 = C the condition (3. 2) is

equivalent to the following condition on the range of 8: e E [ - 8max]
where Observe also that the proof of the
lemma yields for sufficiently large n

Thus using (2 . 4) we obtain (?-o > 0)

(1+o(1))R(.~e~.f’n)~~’’o2~+uC~~t2Y+1~(~W) l~~-~2~~)/(r21-~C(I~’-E)).
Whence we obtain that lim sup R ( fo, fn) n2’’~t2~r + 1 is bounded from below

~ 0

by

It is easy to check that the maximum of the above expression is attained
at C = a (2 y + 1 ) and is equal to

Since E > 0 can be chosen arbitrarily this gives the bound equal to L(0),
for y = 2 L (0) = (5/6) (r L2 ~i6/6 C2 (K)) 1~5. D

Let I ~ . I denote supremum norm on [ -1 /4, 1/4]. We will prove.
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COROLLARY 2. - Let ~ be a family of twice differentiable densities such
that I I f " I I  ~. Let K be nonuniform kernel satisfying conditions (a) - (d)
such that K" exists and is bounded. Let f(n, K, C) be the kernel estimate
of j(O) with nh5 = C.

There exists a constant D (K) depending only on K such that

Proof - Put 03B4=sup|k’’| I and let range of 8 be defined by
Since 82/h = o (1) for such choice of 8 and h, we have

2 for sufficiently large n. Moreover, it is easy to see that

I - n 82 ~2/(~ - h) nh5 = n 82 ~2/~ C + o ( 1)-
Thus  2 for sufficiently large n. The relation (2. 4) yields the
conclusion of the corollary with bound greater than 1- 82 /(r2 [3) C. D
The Corollary 2 should be compared with the following result. Let

a E [ao, 03B11] where So will stand for an interval [ - so, so]
and F03B1 consists of densities of the following form:

(a) 
(b) r (x) x~S0.
It is easy to see that is nonempty for every choice of r (x) satisfying

( b) if

and

Put fF = summation being over aE[ao, Xi]. It is known (cf. Sacks
and Ylvisacker [9] and Sacks and Strawderman [8]), respectively that the
kernel estimate based on Epanechnikov kernel and

m)n-1/5) is asymptotically minimax in F against the class of
kernel estimates fn with deterministic bandwidths, namely

but it is not asymptotically minimax against all possible choices of fn i. e.

there exists an estimate In such that

for some a > 0.
The link of this result with our Corollary 2 is the following. It is clear

that under the imposed assumptions oe W for appropriate choice of

Vol. 25, n° 2-1989.
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so, ocl and m. Thus taking in Corollary 2 the Epanechnikov kernel for K
and we obtain that there exists 8o such that

for some small positive number c. At the same time

Thus Sacks and Strawderman’s result shows that it is not possible to
replace the lower bound in the Corollary 2 by 1. However we will show
that the adaptive kernel estimate is asymptotically minimax among all

estimates fn.

Put y = and consider the following adaptive kernel estimate

(cf Woodroofe [11]). Let H be symmetric two times differentiable kernel
with a compact support and let ~s (0) be a kernel estimate of f(0) defined
in ( 1. 1 ) pertaining to the kernel H and bandwidth sequence 03B4(n). Denote
by (0) its second derivative

The adaptive bandwidth is defined by the following equation (cf (1.3)].
If

then

where cn ~ 0, Cn ~ ~.
We prove that fn cannot be improved uniformly 
COROLLARY 3. - Assume that K is symmetric and H" I and I K" I are

bounded. Let 6 (n) = A 
+£ for some positive A and E and assume that

Cn = nb where a > 0, 0  11 b/5  6 E. Let h be defined by ( 3 . 3).
Then

Proo f - Let hM(hm) be defined by the equality Con-

sider the parametric family defined in Corollary 2 with C replaced by C . n
K, CJ. By Corollary 2

To enlighten notations, we set 
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Now it sufficies to show that

which follows from

Observe that in view of (2. 5)

thus it suffices to show that

uniformly in e. Since I K is bounded by a we have

Further

and observe that twofold integration by parts yields

and substituting f e (x) = (~i - h~ - ~~2 o hM s~2 K" for small x we

obtain that the above integral is of the form

Expanding H around 0 and using the fact that JK" (y) dy = 0 and K" is
symmetric we obtain that the above integral is of order (C~ ha~/n)~’~ 6~ ~.
Thus it is easy to see that a condition

- ..- -

implies that

Analogously we obtain that

provided that

Vol. 25, n° 2-1989.
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Observe further that f03B4 and f’’03B4 are sums of i. i. d. r. v’s and

Thus Benett inequality (Benett [2]) together with (3.6) and (3.7) yields

for some C, C1, C~ > o. Thus (3 . 4) is satisfied provided that

C;/5 e~ z~s exp ( - n5E /Cn) = o (I) which is obvious in view of the imposed
assumptions. D
Remark. - Let us devide the sample into three parts of size m, m,

n - m respectively, where m = o (n) and let denote now the pilot
estimate of the density (the second derivative) based on the first (the
second) subsample. Denote by the kernel estimate based on the third

subsample with h defined as in (3.3). The similar reasoning to that

presented above shows that Corollary 3 is also true for f n under suitable
growth conditions imposed on c~ and Cn.
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