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ABSTRACT. - Using Fubini’s theorem for double Wiener integrals, it is
possible to show that certain quadratic functionals of Brownian motion
have the same law. This is applied to the variance of the Brownian path,
which has the same law as the integral of the square of the Brownian
bridge.
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RESUME. - A l’aide d’un theoreme de Fubini pour des intégrales de
Wiener doubles, on peut montrer que certaines fonctionnelles quadratiques
du mouvement brownien ont meme distribution. Ce résultat est applique
a la variance de la trajectoire brownienne, qui a meme loi que l’intégrale
du carre du pont brownien.
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182 C. DONATI-MARTIN AND M. YOR

1. INTRODUCTION

(1 .1) We denote the quantity for Let

(ZS = ~S + i ~$, s >__ o) be the complex valued Brownian motion, with Zo = 0,
1

and let G= be its centre of gravity over the time interval [0,1].

Duplantier [3] obtained the distribution of

ma the computation ot its characteristlc function:
A

This formula (1 a) may be derived simply (see Yor [13]) from the celebrated
Levy formula (see Levy [7]; (1950)):

"

where A= Jo Z.xJZ,.
It has been remarked that:

where

and this identity ( 1 c) may be used as a step towards the proof of ( 1 b),
reducing this proof to a computation involving only the radial (Bessel)
process (I ZS I, s  1 ) (see Williams [ 11 and Yor [ 12] for details).
(1.2) Following the publication of [ 13], the second author (M. Y.) was
then asked by K. Jansons (personal communication; September 1989),
following the computation made in [5], whether the computation of the
Laplace transform of:

"’1

might also follow from Lévy’s formula (1 b). Actually, P. Malliavin has
been interested for quite some time in the distribution of ~‘~~ (see [8]) and
had also asked M. Y. in 1980 to compute its Laplace transform. However,
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183VARIANCE OF A BROWNIAN PATH

in December 1989, we came across the work of Chiang, Chow and Lee
[2] from which it follows in particular that:

where s __ 1 ) is a standard, complex-valued, Brownian bridge. One of
the proofs given in [2] is particularly simple, and provides an affirmative
answer to K. Jansons and P. Malliavin’s questions; here is this proof: the
next formula ( 1 e) follows from Lévy’s formula ( 1 b) by integrating with
respect to the law of Z~

The left-hand side of (1 e) is also equal to:

(the reader may also check that these formulae are in agreement with the
more general formula (2 k), in the case d = 2 and a=0, in Pitman-Yor
[10]) and integrating both the latter expression and the right-hand side of
(1 e) with respect to the Lebesgue measure dz [R2, one obtains:

from which, put together with ( 1 b) and ( 1 c), one deduces ( 1 d).
However, in the second paragraph of the present paper, yet another

quite elementary proof of (1 d) is given, which essentially follows from
Fubini’s theorem. This argument allows us to derive a general extension
of (1 d).
( 1. 3) We take this opportunity to mention two estimates on the Laplace
transform of 1/ G which were made, on one hand by P. Malliavin [8],
p. 328, and, on the other hand, by Ikeda-Watanabe [4], Lemma 8. 6 (this
has become Lemma 10.6 in the second edition of [4]).
From (1/), we have:

r / , , -.’" " /~B 4

and it seems interesting to remark that P. Malliavin majorizes the left-

hand side of (!/’) by 201420142014, , whereas Ikeda-Watanabe’s majorization is
cosh

~

sinh03BB
°

Vo!.27, n° 2-1991.
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Independently ot this, our interest In these questions was turther aroused
by the computation, made at Cambridge by T. Chan and C. Rogers
(Personal communication of K. Jansons [5]) of the joint Laplace-Fourier
transform of the law of (1/ G, G, Zl). This prompted us to work out a
complement to the development of Brownian motion along the Legendre
polynomials orthogonal basis of L2 [0,1]), and its relationship to Lévy’s
formula (1 b), as done originally by Biane and Yor ([ 1 a], [ 1 b]).

This complement consists in obtaining a simultaneous orthogonal devel-
opment of E, and Z, two independent 2-dimensional Brownian motions,

and to represent terms of this development. This is done

precisely in paragraph 3, where we also derive another simultaneous

orthogonal development of ç and Z, and express Ii df;s x ZS in terms of
this development. In both cases, the Legendre polynomials again play a
fundamental role.

( 1 . 4) In paragraph 4, we return to our extensions - presented in para-
graph 2 - of the identity in law (1 d). We show that those identities in law
can also be derived by remarking that certain pairs of operators on
L2 ([0,1]) have the same eigenvalues, thereby connecting our work with
the time-honoured diagonalization procedure, which goes back to Lévy’s
original paper [7] and has been used again and again in most of the
computations of the laws of quadratic Brownian functionals (examples
already quoted above are [1 b], [2], [3], but see also Kree [6] and

McAonghusa and Pulé [9] for other examples in the recent literature).

2. SOME IDENTITIES IN LAW BETWEEN BROWNIAN

QUADRATIC FUNCTIONALS

(2 . 1 ) The identity in law ( 1 d), and, more generally, a large class of
identities in law between two Brownian quadratic functionals, are imme-
diate consequences of the following Fubini type identity between double
Wiener integrals: let p: [0, 1]2 - R be a deterministic function such that

,, i , 1

i nen, me almost sure identify noios:

... 1 /* ~ 1 ,.. 1
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where, here, for simplicity, ç and Z denote two independent one-dimen-
sional Brownian motions, starting from 0.
From (2 a) and the independence of ~ and Z, we now deduce the general

identity in law:

where s~ i) denotes here again a 1-dimensional Brownian motion.

Remark. - The identity (2a) and the identity in law (2b) extend
obviously to a pair of d-dimensional Brownian motions ~ and Z on one
hand, and a d-dimensional Brownian motion B on the other hand, pro-
vided the products dZ~ and d~u in (2 a) are scalar products, and
the squares in (2 b) are squares of the euclidean norm. D

Applying the identity (2 b) to some particular integrands (p, we obtain

the following

PROPOSITION 1. - 1. Let f: [0,1] ] --~ R Then, we have:
~1 / ~1 

In particular, i f ’ f ( 1 ) = I , we obtain:

~. t,et we nave:

Proof - (2 c’) immediately follows from (2c), and (2c") is obtained
from (2 c) by taking f(u) = au.

It remains to prove (2 c). This follows from (2 ~), when it is applied to:

Indeed, with this particular (p, we obtain, on one hand:

27. n° 2- 1991 .



186 C. DONATI-MARTIN AND M. YOR

whereas:

The second identity in law in (2 -e) follows from the first by using:
- (law)_- - _ _ _

(2.2) We now strive to obtain another extension 01 the identity in law

(1 d), which corresponds roughly to the computations of T. Chan and
C. Rogers [see ( 1 . 3) above] and, more importantly, shall put us on the
right road to the infinite dimensional extension which we develop in

paragraph 3.
In this paragraph, ~ and Z are two independent 2-dimensional Brownian

motions starting from 0. We recall some notation from [13]: consider the
decomposition

1’B. r-y ~ . r-~r ~ ~- 1 B

(Zs, s~1) ls a Browman bridge which ls mdependent of Z1. Usmg the
1

decomposition (2 d), we develop ~ = X and we find:

ana

An integration by parts shows that:

so that, with our premous notation tor tne barycentre, we obtain:
i w n~ e~ .~ w ~. - =

1 ne resi 01 tms paragrapn is devoted io snowing me Ioiiowmg identity m

law:

io prove (2~), we shall use some independence properties between certain

r.v’s, together with the following almost sure identity, which is a particular

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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case of (2 a):

(the last equality is obtained by integration by parts). We now remark
that, on the left-hand side of (2 g), the pair (j~, p) is independent of Z ~,
since, from (2 f ), P = - 2 G is measurable with respect to 2. Likewise, on
the right-hand side of (2 g), we see that the variable 03BE1 is independent

from the pair (10 d03BEs.(Zs-G), G , by using the identity (2 h). Hence, in
order to prove (2 g), it is now sufficient to prove

We shall derive this identity in law from:
/ 18 -i ,

the proof of which we postpone.
Assuming for the moment that (2 j) holds, we derive the following

equality, for every and zeC:

r /*1 -,

We deduce from (2 e) that the left-hand side of (2 j’) equals:

whIle the right-hand side of (2 j’ ) is equal to:
r-- ~ A~ ’- ---,

thanks to the independence of the right-hand side of (2 i) and Ç,1. The
equality in law (2 i ) now follows from the equality of (2 k) and (2 1) and
the invariance by rotation of the law of the Brownian bridge Z.

It now remains to prove (2 j). By linearity, it is sufficient to show that
for any zeC:

1 his follows from tne fact that eacn oI processes:

Vol 27. n° 2-1991.
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is a real-valued Brownian motion, which is independent of J, s ~ 0).
The proof of (2 g) is now complete.
(2.3) In paragraph 3, we shall give an infinite dimensional extension of
the identity in law (2 g). However, before doing so, it may be of some
interest to compare, for any a e R, the characteristic function of

and the Laplace transform of (03B1)~ |Zs - a G|2 ds, thus showing that
0

the identity:

which is a consequence of (1 c) has an adequate, but non-trivial, extension
for any 03B1 ~ R. We prove the following

PROPOSITION 2. - Let Z and 03BE be two independent 2-dimensional Brownian
I

starting from o. We define : (03B1) = 10 d03BEs. (Zs- 03B1 Gj. we 

for every 03BB ~ R:
r i ~~ »

Proof - On one hand, we deduce from formula (2 e) that:

Un the other hand, we have, from the definition of ::/(B1.):

and we deduce from (2 g) that:

Comparing mis wim me aoove expression 01 , we obtam 1 ), and
(2n 2) follows, with the help of formula (2.8) in [13], for the explicit
computation in terms of cosh and sinh. D

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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3. A SIMULTANEOUS ORTHOGONAL DECOMPOSITION
OF TWO INDEPENDENT BROWNIAN MOTIONS

(3.1) The decomposition (2 e) s/ = §7 + Z1  J3 arises as the first step in
a series development of ~, which is obtained when developing s _ ~ ~
along the Legendre polynomials orthogonal basis of L2 [0, 1]. More preci-
sely, we have the following

THEOREM 3 (Biane and Yor 1 a], [1 b]). - Let P (t) - 1 2m n!dn dtn t2 -1 n
be the sequence of Legendre polynomials.

Consider the orthogonal decomposition of Brownian motion:
00 / /8+ t ,

where:

Then:

(i) The stochastic area ~ may be represented as:

where the convergence holds both in L2 and a.s.

(ii) For any p e N, we have:
, I t 0 ,

where:

(3 . 2) We insist that the identity (2 ?) is the first step in the decomposition
(3~), since and 

We took this remark, put together with the identity in law (2~) as an
indication for, possibly, the existence of an interesting decomposition of

‘~.‘3s - Zs.
In fact, the rest of this paragraph shall be devoted to proving the

following companion to Theorem 3.

Vo!.27.n° 2-1991.



190 C. DONATI-MARTIN AND M. YOR

THEOREM 4. - Let 03BE and Z be two independent Brownian

motions, starting from o.
Consider the two orthogonal decompositions:

00 00

where:

and is the sequence Legendre polynomials.
Define:

and, Jor every p, we have:

or equivalently : (~3k; 0 __ h  0 _ k  (0).

Finally, the following , formula holds :

~.~here hp and kp have the same meaning as in Theorem 3.
(3.3) To prove Theorem 4, we now mimick the proof of Theorem 3,
given in Biane-Yor [1 a].
We first define a sequence of Gaussian processes t _ Gaus-

sian variables yp, via the recurrence formula (3 c) below.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Since for the even (resp. : odd) indices, (resp. : 1l2p+ 1 ) is measurable
with respect to ç, resp. : Z, we shall write: 

These recurrence formulae are:

{

with the initial conditions: Ç,o (s) = Ç,s and Z1 (s) = ZS, and the additional
requirement that, for every s, is orthogonal to yk. We define:

Now, from (3 c), we deduce:

In order to prove the theorem completely, it now remams to show that,
for any k, y~ and Bk have the same covariance, that is, thanks to [1 a]:

and, moreover, to identify the function vk, that is, more precisely, to show
the formulae (3 b).
From now on, we shall, as we may, assume that ç and Z are two real-

valued, independent, Brownian motions. We shall proceed in 5 steps.

Step 1. is absolutely continuous, and the sequence: (v2 p, p >__ 0), resp.:
an orthogonal sequence in L2 [0, 1 ] .

Proof. - admits the Wiener representation:

03B32p+1 = {I Cf>p (s) dZs, for some function in L2 [0,1].

Since the variables (03B32p+ l’ p~ 0) are orthogonal, the functions are also

orthogonal in L2 [0,1].
From the orthogonal development (3 c), we deduce:

Vol. 27, n° 2-1991.
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hence:

anu consequently:

ine proot tor tne oad mtegers IS identical.

Step 2. - We prove the following relations : for k ~ 2,

which may be written, using integration by parts, as:
/* -

using:

me iasL reiauon romows from me oruiogonainy 01 and

Proof of (3 e). - Note that as defined in (3 c), can be written as
P1

(s)= ~k + 2q + 2 (s) + vk + 2 p + 1 (s) 03B3k + 2 p, therefore:
p=0

Finally, (3 e) follows from the orthogonality of 7~+2. ’ - ’~+2r and

llk+2q+2. ~

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Step 3. - We compute the two covariances of the processes ~~~ and
Z2p+ 1. From the formulae: 

we deduce:

where: ~,k = E [yf].
Step 4. - Recurrence formulae for the functions vp. Let k >_ 2; we have:

using (3 e) and V1 (s) = s.
Hence, we obtain:

using (s) ds = o, which follows from the orthogonality of ~y 1= G, and
0

Y2k - r ~ for k ~ 2.
1

Formula (3 j) is also valid for k = l, using v2 (s) ds =1. For k >__ l, we
also show in a similar way:

For A- == 0, we have:

Vol. 27, n° 2-1991.
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These formulae show, by a recurrence argument, that vp is a polynomial
of degree p, for p >__ 1.

Step 5. - Conclusion. We define a sequence of polynomials k >_ 1 )
by:

men, (v2k, k ~ 1). resp.: 1 ~ k ~ 0), is an orthogonal family of L‘ [0, 1 ].
Now, formulae (3 j) and (3 k) can be written, in terms of v, as one

formula:

and

From the classical recurrence formula between Legendre polynomials:

it is easy to deduce that ?~ - I and, finally:
2p+ 1

(3 . 4) Starting from the identity in law

instead of (2 g), where the only difference lies in the right-hand sides, with
the scalar product. in (2 g) replacing the exterior product x in (2 g’), we
obtain the following Theorem.

THEOREM 5. - Let ~ and Z* be two (~2-valued independent Brownian
motions, starting from 0.

Consider the two orthogonal decompositions:

where:

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Define:

Then, for every the stochastic integral may be represented as:

and we have:

or, equivalently:

Proof - We introduce the matrix A = ( -1 0 1 which satisfies:

for x, y E R2, and another Brownian motion Z, which we
define by: Z* = AZ. Using the notation introduced in Theorem 4 for the
pair (~ Z), we find that:

and Theorem 5 now follows from Theorem 4 thanks to the above identities

since, for every m, we have: = D

4. AN EIGENVALUE INTERPRETATION
OF THE ABOVE IDENTITIES IN LAW

(4 .1 ) Our main aim in this paragraph is to show how the identity in
law

where (p is a general function of L 2 ([0, 1]2, du ds) could also have been
derived using the diagonalization procedure initiated by P. Levy [7].

Vol. 27, n° 2-1991.
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We first use Itô’s formula to develop (1 s)); we obtain:
(4a) (I s))2 =2 s)s0 dBh03C6(u, h)+t0 ds03C62(u, s).

Taking t=1, and integrating both sides of (4a) with respect to we

obtain the following a. s. identities:

where:

and

As a consequence of (4 b), the identity in law (2 b) is equivalent to:

(4.2) We now recall the main facts about Lévy’s diagonalization proce-
dure and apply them to prove (4 c).
To any function a : (s, h) - a (s, h) belonging to L2([O, one

can associate an Hilbert-Schmidt operator A, which is defined by:
r, 1

We now remark that, if 0 denotes the Hilbert-Schmidt operator thus
associated to p, then 4Y* 1>, resp.: is the trace-class (and, conse-
quently, Hilbert-Schmidt) operator associated to H, resp.: K, where A*
denotes the adjoint of A.
The key to the proof of (4 c) is now that 1>* 1> and have the same

eigenvalues, with the same orders of multiplicity.
Indeed, with this fact in hand, it remains to use the following well-

known arguments:
if a is a symmetric function of L2 ([0, 1 ]2), and if A is a trace-class

operator, then A is diagonalizable in an orthonormal basis of eigenvectors

Annales de Henri Probabilités et Statistiques
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of L 2 ([0, 1]), corresponding to the eigenvalues so that:
A a1= Jli ~i 
The function a may be represented as:

and we have:

where (10 dBs aj(s); j~N) is a sequence of N (0,1) indepen-

dent random variables.
In our application, if we call (cpi) the sequence (a;) associated to

A=C*~, resp. : ($J the sequence (Jj associated to (~), we obtain:
~ ~~.r. , ~ -m- ~~ -~ ~ N 

and, from (4 d):

which implies (2 b).
(4.2) We end this paragraph with a few more remarks concerning the

identity in law (2 b).
(i ) It is tempting, when considering the identity (2 b), to wonder whether

a "polarized" version might also be true, that is: for any pair of functions
p and 03C8 belonging to L2 ([0, 1]2, ds du), does the following:

(1 j The tilda notation should not cause any confusion, since we use the notation B* for
the transpose of the operator 0.

27, n° 2-1991.
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hold?
We now prove that, even for some very particular p and Bj/, (4 f?) may

not be true.

Indeed, if we take:
~/~. ~B2014~/..BL/~B..),/. ~2014 ~/,B 

and denote:

then, the lett-hand side, resp.: the right-hand side, 01 (4 J°1) is equal to:
aBD, resp.: f3AC, where:

Hence, in this example, (4 f ?) is true if, and only if:

it is easy to snow that (4g?) noias 11 ana only n:
. -~ "- ~t~.--~~--

where ~=h(A ), {!3‘), and so on...

(ii) We go back again to the beginning of our discussion of (4 f?); if

(4 f ’‘~) were true, then by linearity in p and the identity in law would
hold jointly for both sides of (4 f?), considered as two families of random
variables indexed by the pairs (cp, ~/).

In particular, going back to Proposition 1, the law of the process :

n~ i v

However, this is nonsense, since replacing a by a’ + 1 and developing both
squares in the above integrals, we would arrive at the identity in law
between:

Annales de Henri Poincaré - Probabilités et Statistiques
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and:

which is, of course, absurd as far as the middle terms are concerned. In
the same vein, we remark that it is also easy to show the following: the
two pairs

and

are identical in law if, and only if: a = b.
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Note added in proof: - Since we submitted our manuscript in March 1990, we have

received the preprint of the paper [14] by T. Chan, where the computation of the law of
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important role in the study of oscillating integrals.
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