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ABSTRACT. - Simulated annealing algorithms are Monte-Carlo simula-
tions of physical systems where the temperature is a decreasing function
of time. The method can be used as a general purpose optimization
technique to locate the minima of an arbitrary function defined on a finite
but possibly very large set. It is described as a non-stationary controlled
Markov chain. The aim of this paper is to build a large deviations

theory in this time-inhomogeneous discrete setting. We make a careful
investigation of the law of the exit point and time from sets, based on
Wentzell and Freidlin’s decomposition of the states space into cycles,
which leads us to establish some kind of systematic "calculus" of the
probability of jumps from one arbitrary subdomain into another one. We
feel that giving a precise description of how trajectories escape from
attractors brings a qualitative contribution to the insight one may have
into the behaviour of simulated annealing. We think also that our sharp
large deviation estimates are a useful tool for further investigations. We
illustrate their use by addressing in this paper and in a forthcoming one
four questions: convergence to the ground states, asymptotical equidistri-
bution on the ground states, the discussion of quasi-equilibrium and the
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shape ot optimal cooling schedules. Short cuts to rough but more
uniform estimate will be given elsewhere.

Key words : Simulated annealing, large deviations, non-stationary Markov chains.

RESUME. - Les algorithmes de recuit simulé permettent de simuler Ie
comportement d’un système physique dont la temperature décroît au cours
du temps. Ils constituent par là-même une méthode d’optimisation de
portée générale capable de situer les minimums d’une fonction arbitraire
definie sur un ensemble fini, fut-il de très grande taille. Leur description
mathématique est celle d’une chaine de Markov contrôlée non stationnaire.
Le but de cet article est d’établir une théorie des grandes deviations pour
ces systèmes discrets non homogènes dans le temps. Une etude détaillée
de la loi du lieu et du temps de sortie d’un sous-ensemble d’états, fondée
sur la decomposition en cycles de Wentzell et Freidlin, conduit a un calcul
systématique de la probabilité des sauts d’un sous-domaine quelconque
dans un autre. Cette description de la façon dont les trajectoires s’echap-
pent des attracteurs nous semble apporter une information qualitative
intéressante sur le comportement du recuit. Nous pensons aussi que ces
estimées précises de grandes deviations sont susceptibles de nombreuses
applications. Nous illustrons leur portée en traitant dans cet article et

celui qui lui fera suite quatre themes : la convergence vers les états fonda-
mentaux, 1’equidistribution asymptotique sur les états fondamentaux, la
question du quasi-équilibre thermique, la forme des courbes de temperature
optimales. Un raccourci vers des estimées plus « grossières » mais plus
uniformes sera présenté ultérieurement.
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INTRODUCTION

Simulated annealing is a simulation algorithm from Statistical Mech-
anics. It was designed to simulate the canonical distribution of a physical
system in contact with a heat bath when the temperature of the heat bath
is progressively lowered to zero. If the cooling is not too fast, the system
will go through a succession of quasi-equilibrium states towards one of
its ground states. As any function defined on a finite set can be viewed as
the energy levels of an "abstract" physical system, simulated annealing
algorithms have been found to be a general purpose optimization tech-
nique, allowing one to locate the global minima of an arbitrary function.
They have been widely used as such without further reference to their
physical interpretation.
From the mathematical point of view, simulated annealing is an interest-

ing case of non-stationary Markov chain: the transition matrices converge
to a boundary point of the domain of ergodic Markov matrices. As
temperature goes to zero the "instantaneous" mixing properties grow
weaker and weaker and one question is to know whether the non-station-
ary Markov chain as a whole retains some mixing properties. The answer
will depend on the cooling schedule, on how fast temperature is approach-
ing zero. Non-stationary Markov chains are a not so recent but still widely
open field of investigation (Dobrushin [7], Iosifescu and Theodorescu [17],
Isaacson and Madsen [18], Seneta [20], Gidas [10]).

Let us formulate some of the questions about simulated annealing
people have been interested in. One is to know for which cooling schedules
quasi-equilibrium is maintained. Another one is to know whether the

distribution law of the system concentrates on the ground states. In case
it is so and there are more than one ground state, one is entitled to ask
whether all the ground states are reached with equal probabilities. Finally

Vol. 27, n° 3-1991.
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when the target is to minimize the energy function, one wants to know
which cooling schedules provide the fastest convergence.
The aim of this paper and of a forthcoming one is to address these

questions.
Partial answers already exist in the mathematical literature. S. Geman

and D. Geman pointed out in 1984 [9] that cooling schedules of the type
with c large enough ensure quasi-equilibrium (n is the discrete

time variable in this equation). The question was then to know what was
the smallest possible value of c.
The critical value was given by different people. Holley and Stroock

showed in 1988 [13] that the law FXn of the system Xn undergoing
simulated annealing had a bounded density In with respect to
the equilibrium law at temperature Tn when c> co, co being the sharp
critical value. Their argument is based on the study of the smallest non
zero eigenvalue of the Dirichlet form associated with the infinitesimal

generator of the process and goes through Lp estimates of fn derived
from the Kolmogorov equations. They were not able to conclude on the
L ex) norm of In in the critical case c = co.
More precise results were given by Chiang and Chow and by Hwang

and Sheu, both in 1988. These authors showed that lim I when

c> Co, co being the critical value. Chiang and Chow uses the forward
equation and an induction argument on the precision of their estimations.
Hwang and Sheu have a different approach. They use the results from

Wentzell and Freidlin [8] on stationary random perturbations of dynamical
systems to derive a weak ergodicity estimate in the approximately statio-
nary case, that is for Markov chains with transitions remaining of the
same order of magnitude as the transitions of annealing at one fixed
temperature. Then they use their estimates on time intervals on which the
variation of the temperature is small enough.

These papers, which are focused on the study of quasi-equilibrium, give
also some answers for the convergence to a ground state but the sharpest
results are in two papers by Hajek [11] in 1988 and Tsitsiklis [22] in 1989.
They give a necessary and sufficient condition for which the probability
of the system to be in a ground state tends to one when time tends to
infinity. The condition is + oo , where d  Co is a "critical depth".

k

Tsitsiklis uses the same strategy as Hwang and Sheu: he studies the
almost constant temperature case and applies it on well chosen time

intervals. Hajek works directly in the non-constant temperature case. He

Annales de 1’Institut Henri Poincaré - Probabilités et Statistiques
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studies the exit time and point from secondary attractors of the system
(he calls them "cups"). If C is one of these cups, he shows by an induction
argument on the size of C that for any state i in C of minimal energy

where H is sharp but not r. He shows also the weak reverse inequality

To my knowledge there was no necessary and sufficient answer to the
problem of knowing whether the law of the system becomes equidistributed
on the ground states before the one given in this paper. I did not found
either any study of optimal cooling schedules (those leading to the fastest
convergence).

Let us close this quick review of the literature by saying that the
constant temperature case is well understood in a more general context
from the works of Wentzell and Freidlin on random perturbations of
dynamical systems. They have made decisive breakthroughs in the theory
of large deviations of dynamical systems with small random perturbations.
Large deviations theory is the right framework to study annealing algo-
rithms because escaping from local minima is an event of small probability
at low temperature.

Roughly speaking we will bring the following answers to the four

aforementioned questions:
1. To study the critical case it is necessary to introduce

a second constant and to consider cooling schedules of the type
The behaviour of the system depends on whether B is

larger than some critical value Bo or not.
2022 If B > Bo, then lim ~fn~~ = + ~.

~ If B  Bo, then lim In (i) exists for any state i, is finite, is always > 1

and for some states > 1.

Hence quasi-equilibrium is not maintained in the critical case but
it can be almost maintained for small enough values of B.
2. We give a new proof of Hajek criterion of convergence: if F is the set
of ground states, lim if and only 

k

27. n° ~-I~91.
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3. We prove that lim P (X~ = f) = Card (F) ’ ~ for any f e F if and only

if where co>d is the same critical constant as in the
k

discussion of quasi-equilibrium.
4. We say that t~, ..., t~ is optimal if

__ ._ _f-r~J __. _ ._ 2014’-r’ __~ , ~ ~

Thus our measure of convergence is the probability to be in a ground
state at some finite (large) time N corresponding to the end of the

simulation. There is no reason a priori to think that the best schedules
T 1, ... , TN are independent of N, hence we have put a superscript N. We
show that there is some value B of B and some a > 0 such that

as soon as k and N - k are large enough.
We show that changing 1/N into 1 /co ln k + B) produces only

a small variation of P (XeF).
Remarks:

~ We will prove elsewhere [3] that (4) does not hold for N - k "small".
This shows that there is no optimal cooling schedule which is independent
of the simulation time N (i. e. such that Tk is constant in N for k fixed).
. Our study of T is done under some non-degeneracy asumptions on

the energy landscape: we assume that there is only one ground state and
that the critical depth d in Hajek criterion is reached only once.

This first paper will be mainly devoted to build the technical tool we
need to prove our claims. This tool is made of a precise and systematic
study of the way the system escapes from any given strict subdomain of
the states space.

This program has been carried through by Wentzell and Freidlin [8] in
a general context that applies to the constant temperature case. We are
going to carry it for simulated annealing, that is in a non-stationary case.
We have not used Wentzell and Freidlin results as Hwang and Sheu did
because we needed more precise estimates: we wanted them to be uniform
with respect to the values of the temperatures and we wanted to know
more than the exponential order of magnitude of the probability to espace
from attractors, we wanted a full equivalent. Nontheless we followed the
conceptions about large deviations which Wentzell and Freidlin give along
with their proofs.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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There are subdomains for which the dependence of the exit time and

point on the starting point within the domain fades away at low tempera-
tures. These subdomains were called cycles by Wentzell and Freidlin. We
will prove that for any cycle C and any state e C

with sharp constants a and H. We will make explicit how the "almost
~-equal" can be considered to be uniform with respect to the temperatures
sequence Tm + 1, ... , Tn. Getting uniform estimates is crucial to address

the problem of optimal cooling schedules. Having a sharp constant a is
useful to prove convergence to the equidistributed law on the ground
states. This is sharper than usual large deviation estimates where only the
exponential order, that is H, is sharp.
The cycles are organized by the inclusion relation into a tree structure.

Two cycles are either disjoint or one is a subset of the other.
Along with the escape from cycles, we will study the jumps from one

cycle to another cycle. Now taking some general strict subdomain of the
states space, we can write it as the disjoint union of cycles in the coarsest
possible way. Studying the jumps from one cycle of this "maximal parti-
tion" to another, we will give the dependence of the exit time and point
of the domain on the starting point.
The proofs are by induction on the size of the cycles. The study of the

behaviour of the system in cycles and the study of jumps from cycle to
cycle are closely related in the induction argument. To prove that the
conditional law of the system knowing that it remains in some cycle
becomes equidistributed on the ground states of the cycle, we study jumps
between subcycles containing the ground states. Then we remove one

ground state from the cycle, obtaining thus a subdomain which is no more
a cycle, and we study the behaviour of the system within this domain
after its last visit to the marked ground state. It has a strong probability
to return to the marked ground state, and a small one to escape from the
cycle. In this we follow the program traced by Wentzell and Freidlin’s
investigation of the escape from a domain containing one stable attractor.
What we get in the end is a systematic algebraic tool to derive estimates

for the system to have lived in a tube of arbitrary shape during a given
period of time as well as estimates for an arbitrary succession of jumps
from one tube ’to another one.
This tool is therefore very general and could lead to other applications

than the results we give in these two papers.

Vol. 27, n° 3-1991.



298 O. CATONI

This research has been carried under the direction of R. Azencott, I am
glad to thank him for having introduced me to simulated annealing and
having supported me by useful suggestions and encouragements.

1. DESCRIPTION OF THE MODEL

1.1. Annealing algorithms

DEFINITION l.l. - An energy landscape is a couple (E, U), where:
~ E is a finite set;
~ U : E ~ (~ is a non-constant real valued function.

DEFINITION 1.2. - Let (E, U) be an energy landscape. A communication
kernel on E is an irreducible symmetric Markov kernel q on E, that is a

function

such that

For any subset A of E, by q|A we will mean the restriction of q to A, that
is the kernel

otherwise.

Remark: The assumption of symmetry could be replaced by the existence
of a locally invariant probability measure, that is a measure ~., such that:

or even by a weaker assumption such as in Hajek [11]; but this would not
lead us to significantly deeper results nor change the nature of the proofs.

DEFINITION 1 .3. - Let us r~~ite x ~ , for the positive part of x, that is for
sup (x, 0). Let (E, U, q) be an energy landscape with communications. For
any T the transition kernel ~.~ at temperature T is a Maikoc kernel

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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on E defined by

and

By convention we will extend this definition to the case T = 0 in the following
way:

DEFINITION 1.4. - A cooling schedule is a non-increasing sequence of
positive real numbers 

DEFINITION 1.5. - A simulated annealing algorithm is a collection

(E, U, q, T, X), where:
~ (E, U, q) is an energy landscape with communications;
~ ~o is a probability distribution on E (the initial distribution);
. T is a cooling schedule;
. and X is the Markov chain on E defined by its initial distribution ~o

and its transitions

Remark. - We can identify (E, U, 20, q, T, X) and (E, U,
q, T, X) as soon as U - U is a constant function on E (because the

law of X is then the same). Hence we can - and will - assume that

1.2. Decomposition into cycles

We follow here the decomposition into cycles given by Wentzell and
Freidlin [8] in a more general setting.

DEFINITION i.~. - Let (E, U, q) be an energy landscape. The level set at
level ~, of (E, U) is the subset E~ of E defined hy

Vol. 27, n° 3-1991.



300 O. CATONI

DEFINITION 1.7. 2014 Let (E, U, q) be an energy landscape. Let 03BB be some

real number. The communication relation at level ?~ on (E, U~ is the equiva-
lence relation defined by

_ f . _ _. , , _ __ . _ - _.... , "’B _ _ _.

We shall assume by convention that (q~ = Id, hence that (i, i) E i E E.

Two states i and j communicate at level ~, if there is a path from i to j
which does not go through any state of energy superior to ?~.

DEFINITION 1 .8. - Let (E, U, q) be an energy landscape. Let ~, be a real
number. A cycle of level ?~ is a subset of E which is an equivalence class of

The class of all cycles of level ?~ will be denoted by ~~ (E, U). The class
of all cycles will be denoted by  (E, U). We have

The class of all sub-cycles of a cycle C of  (E, U) will be denoted by
CC (E, U, C). Thus we have

T T !’rB - ~ f~ _ VTB ~ ~~ ~ 1 /inB

Let us mention a few simple facts about cycles:

PROPOSITION 1.9:

~ All sets reduced to one state are cycles.
~ If C and G are in ~ (E, U) they are either disjoint or comparable for

inclusion (that is one is a subset of the other).
~ (E, U) is a partition of E.

DEFINITION 1.10. - Let (E, U, q) be an energy landscape. We extend
the definition of U to  (E, U) by putting

~ T / ~B . t T / .. /~B

The energy of a cycle is the energy of its fundamental states.

DEFINITION l.l l. - Let (E, U, q) be an energy landscape. Let A be a
subset of E and let be any states in E. We define the minimal energy of
communication between i and j through A to be

T T /.: ~ A 1 - : ,.~ ~’ / ’’1 . ~,"..~ 1tI /: =1 ~ i 

DEFINITION l .12. - The boundary of AcE is
- .._ ~ - .. _

Annales de l’Institut Henri Probabilités et Statistiques
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DEFINITION 1.13. - The depth function (E, U~ --~ Il~ is defined by:

Remark. - The max is needed in the case when C is reduced to one

point.

DEFINITION 1.14. - The principal boundary of ~ (E, U) is

Remark. - Again the  is there to cover the case singletons. When C is
not reduced to one point, the inequality is equivalent to the equality:

PROPOSITION 1.15. - then

DEFINITION 1.16. - The bottom of C E ~ (E, U) is

DEFINITION 1.17. - Let (E, U, q) be an energy landscape with communi-
cations. The set of minimums of E is

A minimum i is called a local minimum f Ui > ~ [let us recall that U (E) = 0
by convention].

DEFINITION 1.18. - Extension of the communication kernel q to

P(E) P (E) and (E, U) :

and for any cycle C of S~ (E, U)

DEFINITION 1.19. - Some more classes of cycles:
Let C be a cycle in ~ (E, U), ~" (E, U, C) will denote the class of cycles

G in ~ (E, U, C) such that U (G) > U (C), and ~’ (E, U, C) will denote the
class of cycles G in U, C) such that F We will abreviate
~‘ (E, U, E) and ~" (E, U, E) by ~’ (E, U) and ~" (E, U).
The reason for introducing ~’ and ~" is the following: if we want to

make sure that the system can reach some fundamental state of C starting

Vol. 27. n° 3-1 ~91.
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trom a state in i, we nave to maKe sure tnat it is possioie to get out 01

any cycle of (E, U, C). If we want to make sure that it is possible to
travel from any ground state of C to any other ground state of C, we
have to make sure that it is possible to get out of any cycle (E, U, C).

PROPOSITION 1.20. - We have

DEFINITION 1 .21. - For any cycles C1, C2 such that C2 cC1, we will
denote by ~’ C1) and call the natural context of C2 in C1 the subcycle

which is minimal for inclusion in
, _ _ ._ _ _ . , ~. - - - - _ . ~ . _ , . _ _ .

DEFINITION 1.22. - Let C be a cycle of (E, U, q). The natural partition
of C is the partition of C into its maximal strict subcycles.

LEMMA 1.23. - The quantity H (G) + U (G) is constant among the Gs

belonging to the natural partition of C.

Proof. - If it were not the case, putting

(G) + U (G) ‘ G in the natural partition of C ~ (31 )

the communication relation at level ?~, would induce a partition of C
coarser than the natural partition of C, which is a contradiction.

End of the proof of lemma 1.23.

DEFINITION 1 .24. - Let (E, U, ) be an energy landscape with communica-
tions. For any CE(E, U) we define

___ . ~.. ~ __ . ~._ ~ _ __ ._ _ _ ~.. ~ "’B. - __

ana

1.3. Invariant probability measures

DEFINITION 1.25. - Let (E, U) be an energy landscape. The equilibrium
distribution at temperature T is defined to be the probability

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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where

is the partition function. We extend this definition to T = 0 by putting

where |A| is the cardinal of A and xA is the characteristic function of A.
PROPOSITION 1.26. - Let (E, U) be an energy landscape. We have for

any iEE

Proof. - Easy.

PROPOSITION 1.27. - For any T E (1~+, ~.T is the invariant probability of
the transition kernel at temperature T. In fact we have a strong form of
invariance, which is local invariance: for any i and j in E

2. STUDY OF SOME LARGE DEVIATION EVENTS

We will need uniform estimates, holding for some families of cooling
schedules. The simplest interesting family of cooling schedules we will
encounter are the neighbourhoods of zero for the L~ norm. We will study
how long the system remains in a given subdomain of E at low tempera-
ture. This is a way of localizing our study both in space and in time.

DEFINITION 2.1. - Let (E, U, q) be an energy landscape with communi-
cations. A cooling framework is any set of cooling schedules. For any

we define the cooling framework:

Such cooling frameworks will be called simple cooling frameworks.

DEFINITION 2.2. - An annealing framework is a collection

(E, U, q, ~ , where:

. ~E, U, q, is an energy landscape with communications and initial
distribution;

Vol. 27, n° ~-~991.
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2022 F is a cooling framework;
X is the class of Markov chains appearing in the annealing algorithms
(E, U, q, T, X) with 
An annealing framework is said to be simple f the corresponding cooling

framework is simple.

DEFINITION 2.3. - Let (E, U, q, ~ , ~’) be an annealing framework.
Let A be some subset of E, the first exit time from A after time m will be
noted

2.1. The most probable behaviour of X

The results from this section are very simple. They quantify the fact
that in first approximation a simulated annealing algorithm strongly
resembles a descent algorithm.

THEOREM 2.4. - For any energy landscape with communications and
initial distribution (E, U, q, ~o), there exist a simple annealing framework
(E, U, q, F, X) and a constant rt>O such that, for any X~X, for any
i, j E E we have

k

Proof. - There are constants a > 0 and To > 0 for which for any T  To,
for any i, je E we have

Consider the annealing framework (E, U, ~ (To), In this
framework

-

DEFINITION 2.5. - Let (E, U, q) be an energy landscape with communica-
tions. For any i ~ E the set of minima of E under i is

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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The set M~ is thus the set of local minima of the states space E which
can be reached by the descent algorithm with transitions po starting at i.

THEOREM 2.6. - For any energy landscape with communications and
initial distribution (E, U, q, there exist a simple annealing framework
~E, U, q, ~ , and constants a > 0, ]0, 1 ~, y > 0 such that, for any

any i,jEE,for any k~N we have
k

Proof. - According to the preceding theorem, we have to prove that
_ ._ . _ _ _ _ ~_ .. _.

Let Oi be the set of states which can be reached by the descent algorithm
with transitions po starting from i:

The relation "to be reachable from" is clearly transitive, which can equiva-
lently be stated in the following way:

If j belongs to oi, then O J is a subset of oi.
The next thing to remark is that M J is never empty, because either j is

a minimum or there is in OJ some state s with energy US  U~. For each j
in oi consider

where

Consider

and

If s is in Mj’ we have

Vol. 27, n° 3-1991.
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Thus

Thus A > 0. Then

But po (i, Q~ - M~) =1-pa (i, M;), hence

Equation (46) is an easy consequence of this last inequality.

2.2. Generalized transition kernels

DEFINITION 2 . 7. - (E, U, ~o, c~, T, X) be an annealing algo-
rithm. The family 1VI of generalized transition kernels of s~ is a

family M of 2 x 2 tensors indexed by P (E) (E) defined by

and

The product of GTKs will be the usual inner tensor product:

Remark. - M (A, is the probability of jumping from A into B at
time n and point j of B, coming from i at time m and having stayed in A
in the mean time.

It will be helpful to introduce some "characteristic kernels":

DEFINITION 2. 8. - For any subset A of E we define the characteristic
kernel of A to be

Remark. - The characteristic kernel of E, I(E) is a unit for the
generalized transition kernels of .~‘:

__.. A. ~~_._. _____ _

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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The following decomposition formulas will allow us to write the jumps
from A into B in terms of smaller subdomains.

PROPOSITION 2 . 9. - Let A and C be subsets of E and let B be a subset
of A. We have:

Proof. - We have

from which it is easy to deduce equation (59).

PROPOSITION 2 . 10. - Let A and C be subsets of E. Let ~ be a partition
of A. We have

Proof - Let us introduce the time of last jump into one of the
components of d: let us call - the equivalence relation induced by d on
E, ij if and only if i = j or there is G E j~ such that (i, j) E G~. We put

We have

but ..., ~ 2014 1
_.._l~_.. ~ A

Moreover, if i E G,

Vol. 27, n° 3-1991.
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and if 

End of - the proof of proposition 2 . 10.
We can write the jump from A to C as a series of jumps between

smaller subdomains, as expressed in the following proposition.

PROPOSITION 2.11. - Decomposition of M :
Let A and C be subsets of E, and let be a partition of A. We

have

with the convention that in the first sum the term corresponding to k = 0 is
T /T ... ’- ....... IVS

in equation tne summation in /c is unite tor any

M(A, ~)I; m (namely it can be restricted to kn-m).
Proof - Consider the equivalence relation - associated with the

partition of A. Define the sequence of stopping times pm by

and

We have for any i~E and any jEC:

Conditioning by pm, I k in each term in the right member gives the
desired result.

End of the proof.
For well behaved domains A (i. e. for cycles) the probability to stay in

n

A between times m and n is roughly speaking f1 ( 1- ~ e - H ~A~~T~~ where

H(A) is the depth of A and the probability of jumping out of A into C is
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roughly

The following definitions will make more precise what "roughly" could
mean in the previous sentences.

DEFINITION 2.12. - A KI (Kernel on the Integers) G is a function

A KI G will be said to be increasing f Gm = 0 for m > n, it will be said to

be decreasing f Gm = 0 for m  n, it will be said to be finite if

A RKI (Right Kernel on the Integers) is an increasing KI Q which has
the Markov property:

w ~ri , ~ ~.,~~

A ~KI is a I~I Q such that Q defined by Qm = (~n is decreasing and has the
Markov property.
Let ~E, U, q, T, ~) be an annealing algorithm. Ror any positive

constants H, a, b, a class Dr (H, a, b) is a RKI Q satisfying
1 ,..~ ., - 1

r

where the cooling schedule T is extended to Z by putting Tk = T1 for k  1.
In the same way a LKI of class Dl (H, a, b) is a LKI Q satisfying

DEFINITION 2 . 13 We will use the following notations for KIs and 

and
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using mese aecomposmon formulas, we are going estlmate Im B) m

terms of RKIs and LKIs.

Let us study first the simplest case as an example to be generalized.
We will study the jumps from A into B by induction on the size of A.

Hence the first thing to do is to describe the simple case when A is reduced
to one point.

Example: Study o~~{~5~, 
We will study the following cases:
~ The pair { i, s ~ forms a cycle C, = F (C).
~ The starting state i is equal to s.
The first corresponds to the simplest case when A is a cycle with one

of its ground states removed. This situation is interesting in the study of
the last excursion of the system from one of the ground states of a cycle
before it jumps out of it.
The second case is the initialization of the induction argument on the

size of A and is mentioned for the sake of completeness.

PROPOSITION 2. 14. - energy landscape with

initial distribution and communications. Let C = ~ i, s ~ be a cycle with 
elements. Assume that Ui  Us. Let j be a state of E - C. There are positive
constants a and b, there is a simple annealing framework
(E, U, q, F (To), X) in which there is a RKIQ1 and a LKI Q2 of class

~ {H~ ~ ~, a, b) such that

Proof - Let us put
.~ _ , ..

where ~~ =1 if k = I and ~k = 0 otherwise. In the same way, let us put:
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It is easy to see that Q is a RKI and R a LKI of class ~d (0, a, b). We
have

and

There exist positive constants To and a such that, in the annealing frame-
work associated with the cooling framework / (To) we have:

with

The choice of To and a are linked, it is possible, for example, to take

Let us put

and

it is easy to deduce the part of proposition 2.14 concerning RKIs from
the preceding equations.
The proof for LKIs is in the same trend, putting

End of the proof

PROPOSITION 2 .15. - Let(E, U, q, be an energy landscape with

communications and initial distribution. Let C = ~ i ~ be a singleton in E and
let j be in E - C. There are positive constants a, To, a and a simple annealing
framework (E, U, q, ~ (To), ~’) in which there exist a R~ Q~ and a
LKI Q~ of class ~ (H (C), a, 0) such that:

Vol. 27, n° 3-1991.



312 O. CA TONI

and

The proof is not difficult and is left to the reader.

End of the example.

2. 3. Jumping out of cycles

The induction argument is a generalization of the preceding example.
The crucial step is to study the jumps from a cycle C. It is decomposed
into two parts:

~ Study the jumps between sub-components of C to prove that the law
of the system knowing that it remains in C becomes equidistributed on
the bottom of C (the fundamental states of C).
~ Study the jumps from C - ~ , f ’~ into E - C where f is some marked

ground state of C, that is consider the behaviour of the system after its
last visit to f : The kernel M (C - ~ , f ~, E - C) is not that of a simple jump,

is not a cycle. This is the reason why the induction

argument is complex and involves the case when A is not a cycle.
We need some definitions to introduce the induction hypothesis.

DEFINITION 2 . I 6. - Let (E, U, ~o, q, ~ , be some annealing frame-
work. Let be some family of Kls indexed by F i. e. depending on
the choice of the annealing algorithm within the given annealing framework.
Let a, b, Hand D be positive constants. The family G is said to be of class
~r (H, a, D, b) [resp. of class ~l (H, a, D, b)] if there exist positive constants
«, and c and and [resp. and

of class ~ (D, c, b) such that

The family G is said to be of class ~ (H, a, D, b) it is both of class
~r (H, a, D, b) and of class ~l (H, a, D, b).

In the same way, G is said to be of class (H, D) [resp. of class
~ (H, D)] if there exist positive constants K, c, d, and a RKI [resp. a ~~~

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



313LARGE DEVIATIONS FOR ANNEALING

of class ~ {I~, c, ~ such that

It is said to be of class ~_ (H, D) if it is both of class ~r (H, D) and of
class (H, D).
We have just introduced definitions allowing one to express that some

n-i

GTKM(A, B)~ is roughly of the form b n We will
k=m+1

need also a sharper notion of comparison when H = V. We will call it

being a-adjacent 
We say that M (A, B)1 is a-adjacent if

with for "good n ’ s" and if more generally

with n2 ~ 1 [i, e. we can roughly speaking apply the Markov
property to M (A, B)]. The definition of a-adjacent has been devised such
that general composition rules could be easily formulated (cl the last

composition lemma).

DEFINITION 2 . 17. - Let (E, U, q, ~ , ~’) be some annealing frame-
work. Let H be some positive real number. The sequence ~ (H, n), characte-
rizing the rate at which X is escaping from a cycle of depth H, is defined to
be

Associated with ~ we define

where To is a positive constant, but where ~c may be negative.
Let ~ be a cooling framework, let oc be a positive constant, let G be

some finite increasing KI (Kernel on the Integers) defined in this framework.
Let G be some sequence depending on the cooling schedule, such as G (H).
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The KI G is said to be to ~ i~, Gm = 0 and for any m  n  n~
such that

we have:

When we will say ~only that G is adjacent to ~’ we will mean that there is a
positive constant oc such that G is 03B1-adjacent to G.

Remark. - If G is 03B1-adjacent to G and if 03B2  a, then G is 03B2-adjacent
to ~.

We will have to express the fact that the law of the system knowing
that it stays in C concentrates on F (C).

DEFINITION 2. 18. - Concentration subsets of a cycle:
Let To be a positive temperature. Let (E, U, q, ~ , ~) be some

annealing framework such that ~ c ~ (To). Let C be a cycle of E. Let A
be a subset of C. Let S, ~3 be positive constants, let be a non

necessarily positive constant. We will call A a concentration set of C of class
O (S, To, oc, (3) if for any T 1/2 ~R + such that To >__ T >-_ T 1 we have

, , _ . ~._ . " ,

Remark:

. If S’ > S, Ti  To, a’ > a, fl’  fl, then
.- ,- - -, - ,-. -.

: If each point of F (C) is a concentration set, then the conditional law
converges towards the equidistributed law on F (C).

DEFINITION 2. 19. - We will call G(T0, H) the cooling framework:
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We will now state the induction hypothesis, introducing five more
definitions.

DEFINITION 2 . 20. - Let (E, U, q) be an energy landscape with com-
munications and initial distribution. Let C be a cycle of E. We will say that
C is of class P1 f there exist positive constants To, d, such that in the
annealing framework (E, U, q, ~ (To, H’ (C)), ~), for any f in F (C)
and j in B (C), M (C - ~ f ~, E - C) f is of class ~ ((U~ - U (C)) +, q (C, j),
H’ (C), a~, and more generally for any f in F (C), i in C and j in B (C),
M (C - ~ f ~, E - C)i is of class ~ _ ((U~ - U (i, ~ C)) +, H’ (C)).
Comment. - In this definition, we compare M (C - ~ f ~, E - C) f, ;~ with

(case of RKIs) and with

(case of LKIs). In the same way we compare M (C - ~ , f ’~, E - C)~; m with

and

Let us recall that U (i, . f, C) is the minimum over paths from i to f in C
of the maximum energy level reached on the path. If G is the maximal- cycle
in (E, U, C) such that i~ G and G, then U (i, f, C) = U (G) + H (G).

DEFINITION 2 . 21. - Let (E, U, q) be an energy landscape with com-
munications and initial distribution. Let C be a cycle of E. We will say
that C is of class if there exists a positive constant To such that in

the annealing framework (E, U, q, ~ (To, H (C)), for any i E ~,
M (C, is of class 

_

and exp(- H (C)/Tm + 1 ) M (C, E - of class
~ / ! T T T T / f-"1 B B -~- ~~-~f W f - re ~ ~‘
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Remarks:

: If C is of class 2, then exp ( - H 1) 1VI (Cs E - C)j, ni, m is of class
- ..- - - - . -__ _ 1 . ~. _v e  ..v -- . -.. __ /T . ...

~ We compare M (C, E - C)~; ~ with
n - 1

and

DEFINITION 2 . 22. - Let (E, U, q) be an energy landscape with com-
munications and initial distribution. Let C be a cycle of E. We will say that
C is of class if for any ~, > 0 there exist positive constants TQ, oc, such

that in the annealing framework (E, U, q, ~ (To, H’ (C)), for any
f E F (C), ~ f ~ is a concentration set of class C~ (H’ (C), To, ~,, oc).

DEFINITION 2. 23. - Let (E, U, q) be an energy landscape with

communications and initial distribution. Let C be a cycle of E. We will say
that C is of class P4 if for any 03BB > 0 there exist positive constants To, oc,

such that in the annealing framework (E, U, q, ~ (To, H" (C)), ~),
F (C) is a concentration set of class C~ (H" (C), To, ~,, a).

DEFINITION 2 . 24. - Let (E, U, q) be an energy landscape with com-
munications and initial distribution. Let C be a cycle of E. We will say that
C is of class P5 if there exists a positive To such that in the annealing
framework (E, U, q, G (To, H (C)), X), for any i E C and j~ B (C),

are adjacent to q (~)/~ F (C) If (H (C)).
Comment. - We compare M(C, E - ~)i; ~ with

_, 1 . 

’

General remark. - The property of being of class k =1, ..., 5, is

independent of the initial distribution 

THEOREM 2 . 25. - Let (E, U, G0, q) be an energy landscape with commu-
nications and initial distribution. Any cycle C U) is of class

k = ~ , ..., 5.
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Comment. - Theorem 2.25 characterizes the jumps from a cycle C at
low temperatures. The estimates are uniform with respect to the cooling
schedules in a L~ neighbourhood of zero. The convergence of the law of
the system knowing that it stays in C towards the equidistributed law on
the fundamental states of C is characterized as well as the concentration

of this law on F(C).
We have chosen to dedicate a full section to the first step of the proof

of theorem 2. 25, which consists of proposition 4. 5, may be the most
interesting result of this paper.
As an illustration of theorem 2. 25 we study the convergence of anneal-

ing algorithms, that is the second and third questions of the introduction,
and bring some complement to Hajek’s results.

3. CONVERGENCE OF ANNEALING ALGORITHMS

DEFINITION 3.1. - Let (E, U, q, T, X) be an annealing algorithm.
Let C be a cycle of ~ (E, U). We will say that the exit time from C is

almost surely finite f, for any we have

DEFINITION 3 . 2. - Let (E, U, q, T, X) be an annealing algorithm.
Let ~x be a probability distribution on E. We will say that the law of Xn
converges to  from any starting conditions f for any for any i, j E E,
we have

THEOREM 3 . 3. - Let (E, U, q, T, X) be an annealing algorithm.
l. Let C be a cycle of ~ (E, I~. The exit time from C is almost surely

finite if and only if
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2. The probability of F (E) tends to one when n tends to inf ‘inity if
and only 

and the exit time from any cycle (E, U) is almost surely finite.
According to the first alinea this last condition is itself equivalent to

TE( + co, H" (E)).
3. The law converges to ~,o from any starting conditions if and only

i~’

and the exit time from any cycle of ~‘ (E, U) is almost surely finite - equiva-
lently H’ (E)).

Remarks:

2022 Points 1 and 2 are proved in Hajek [11] by different means. Point 3 is
a complement to Hajek’s results.

. If condition 2 is fulfilled when A  I/H" (E) and
condition 3 is fulfilled when A  1 /H’ (E).

Proof - The fact that the condition given in the first alinea of

theorem 3. 3 is sufficient is a simple consequence of the fact that any cycle
C is of class Indeed this implies that

’ 

P (I (C, m) > n)
n

n

as soon as Hence for any n such
k=m+ I

that

we have
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Now we can apply the Markov property to see that it holds for any n
such that

(Let us remark that it would have been sutlïcient to use instead ot the

more precise 
The condition in the first part is sufficient because any cycle C is of

class ~4. In order to see that it is a necessary condition, let us suppose it
is not fulfilled. Then we have

The case when Tn = 0 for n large enough is trivial, thus we can assume
that it is not so. We can find a subcycle C of C such that T is in

~ ( + oo, H’ (C)), but not in (+oo, H (C)). Then there exist positive
constants To, d such that in the annealing framework % (To, H’ (C)) for
any g in F (C) and any j in B (C), I1~I (~ - ~ g ~, E-C)~ is of class

q (C, j), H’ (C), d). Using the right part of equation (87)
with r = 2 we see that, for any m such that T m  To we have, for any

We can then choose some mo such that

+00

It is an easy exercise to see that for m large enough, for any i in C, we
have:

From these three equations we deduce that, for any 
-W~ ~ / ~ ~-., ~ , ~ ~ T .. -

This ends the proof of the first alinea of theorem 3 . 3.

Proof of theorem 3. 3. 2.
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LEMMA 3 .4. - If

then

hence

Proof of the lemma. - Putting k = k~ 1 and 0 = we have

Using the fact that ~k is pTk invariant, we find the following equality:
M n n

Using the fact that q is irreducible, it is easy to establish that there exist
constants K > 0 and ~, E ]o, 1 [ such that for any measure p on E such that
p (E) = 0, we have

where

Thus we have

As

we have

where ~n is the law of X".
End of the proof o f lemma 3 .4.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



321LARGE DEVIATIONS FOR ANNEALING

This proves that lim T~ = 0 is a necessay condition in parts 2 and 3

of theorem 3.3.

Suppose now that there exists C E ~" (E, U) such that

It is easy to deduce from the fact that q is irreducible that there exist
constants no and E > 0 such that for any i~ E we have

- ,, , ~-. ~ ~r ., , . - -,

Let

then for all n > no

As C (~ F (E) = 0, this proves that

The "if ’ part of theorem 3.3.2 is a straightforward consequence of the
fact that every cycle is of class ~~,.

Proof of theorem 3.3.3. - The "if’ part is a consequence of the fact
that every cycle is of class 
As for the "only if’ part, let us consider a cooling schedule T such that

1 ’ ! TT1 ~~2014x 1- , B . ~~ *~ ~B

We can find a cycle C (E, U, q) such that

and

Thus applying property we can prove that
,__ _ _ _ _

Hence

Consider n E N and i ~ C such that
.._ _ , ~ __
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For any m>n we have

rience tne iaw o~ ~.~ cannot converge to ~.o trom the starting condition
Xn = Z.

This ends the proof of theorem 3.3.

4. BEHAVIOUR OF ANNEALING IN RESTRICTED DOMAINS

As we have already explained, we have to study the jumps from C - ~. f ~
into E - C, that is the jumps from a subdomain of E which is not a cycle.

Within the logic of the proof of theorem 2.25 this is part of the induction
step leading to :~1. But it is also generalizing the study of the jumps to a
general subdomain. As such it deserves a full section.
We want to know how the system jumps out of some subdomain A of

the states space E. For that purpose it is not necessary to know exactly
the starting point i. Indeed if fi 1 and i2 belong to the same subcycle C of
A, jumping out of C, and hence out of A, does not depend at low

temperatures on whether the starting point was i 1 or i2 . Hence it is enough
to be interested in the jumps between components of the partition of A
into cycles. Roughly speaking, we can consider in this study each of these
components as a symbolic state and estimate the transitions between these
symbolic states. We will assume that A is a strict subdomain of E and
represent the complement of A in E by an abstract absorbing state O. If
the temperature does not tend to zero too fast the process on the abstract
states is absorbed in 0 with probability one. Proposition 4.5 gives sharp
estimates for this process.
The process on the abstract states can be decomposed into two parts:

the jumps and the dwelling times in the abstract states. The probability
of the jumps depends only on the communication matrix q and the

decomposition of A into cycles, thus it is independent of the temperatures
(provided that they are low and provided that we consider only the most

n

probable jumps). The dwelling times are of the form n ( 1- ~ e - H’T~).
k=m+1

Many envents can be expressed in terms of jumps from subdomains of
the states space. Hence proposition 4.5 can serve as a tool for many
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applications. Some of them will be given in a forthcoming paper. For
instance we see that if there are sequences such that

un

lim = o and lim 03A3 e-H + ~, H (A) being the depth~~ "~ 

i

of the deepest subcycle of A, jumping out of A will occur at almost
constant temperature. Hence removing from E the deepest attractors of
the system {i. e. the bottoms of the deepest cycles), we see that we can
deduce an equivalent of the law of the system everywhere from an equiva-
lent on these attractors for convergent cooling schedules of the type

DEFINITION 4.1. - Let (E, U, q) be an energy landscape. For any subset
A of E, we define the maximal partition of A to be the partition of A into
its maximal subcycles. Note that the maximal partition of a cycle is the

trivial partition reduced to one class. Our notation for the maximal partition
of A will be ~/l (A).
We will generalize the notion of depth to any subset of E.

DEFINITION 4.2. - Let (E, U, q) be an energy landscape. Let A be a
subset of E, and let ~ be the maximal partition of A. We put

DEFINITION 4.3. - Let (E, U, q) be an energy landscape. Let A be a
subset of E. We associate with A an "abstract" states space which we

construct by adjoining to the maximal partition ~ of A an "external" point
0; the states in ~ will be called the "internal states". We associate with A
a Markov kernel vA which we call the communication kernel associated with

A. This kernel is defined on by

and

We call the homogeneous Markov chain ~A on defined by ~~ the
communication chain associated with A. We will denote the potential of vA
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by

we will also put for technical purpose
+~

LEMMA 4.4. - Let (E, U, q) be an energy landscape. Let A be a strict
subset of E. For the associated communication chain the external state

O is reachable from any internal state G.
The reason is that the internal states are maximal subcycles of A.
Proof. - Let G be an internal state. Let R (G) be the set of S~A

which are reachable from G. Let

Let

If C is a cycle then C E ~ (G) and B (G) = 0, thus 0 is reachable
from G. If C is not a cycle, then there is i E E - C such that i E B (C) and
Ui~03BB. We cannot have i~ ~ S, because this would imply iEC, thus

we cannot have ie A, thus 0 is reachable from G.

End of the proof of lemma 4.4.
Let us consider the communication Markov kernel v~ associated with

A. The maximal partition ~ of A is preordered by the relation

We deduce from this the equivalence relation on d

This equivalence relation determines a partition d’ of .91 on which an
order relation is induced by the pre-order relation  of ~. Notice that in

general is not totally ordered. Notice also that are sets of sets

of A. We can get down to the level of subsets of A by putting:
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The order  on d’ canonically induces an order on P for which we will
use the same notation. For any the maximal partition of D is a
subset of the maximal partition of A, and the communication Markov
kernels v~ and v~ have the same restriction to ~ (D).
For any D E ~‘, for any G, G’ E ~ (D), we have

TT !!-YB ~ T T ~~*~ ~ TT ~~*t ~B . v ~ ~ !r‘I1B ~  ~ ..1B

We will call ~, (D) this common value.

The proof is the following. - If B {G) ~ ~‘ ~ ~ then
’ 

T T ! !V B . T T / !"1 1 ~ T T ! /~I 12 . T T ! - 1B

moreover, for any G, there are chains 

G i, ... , G~, of elements such that G 1= Gs. = G, = G’ and

~1 1 ~ QS, as well as B (G~) ~1 1 ~ ~-
End of the proof
Hence for any G, G’ (D), we have

and

In the same way, it (j, (j’ ~A with G  Ci’, then

It is time now to give the main proposition of this section:

PROPOSITION 4.5. - Let (E, U, q) be an energy landscape. Let A be any
strict subset of E. Let ~ be the maximal partition of A. Assume that any
G is of class then there exist positive constants To, and oc such that
in the annealing framework (E, U, q, (To, H (A)), for any G,
G’ E for any i ~ G, j E G’, there are constants H (G, G’) >_ 0 and y (i, j) _>_ 0
such that the GTK M (A, G‘)i; ~ [resp. exp ( - H 1 ) M (A, is

of class ~r (H (G, G’), y (i, j ), H (A), of class
.__ . ~ ~.. __ .. _ ’- . _ A _~ __ .. , ., ...

T~ ~ ... i s. ~2014 ~~ t~ / , A / 1

and i~ Ci and Ci’ c V’ ~ ~’ then
,
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where the infimum is taken over the sequences of length r >_ 2 such that

and such that there are i~Dk and j~Dk+1 with q(i,j)>0.

Remark. - When the induction will be completed, we will know that
any cycle is of class 

Proof of proposition 4.5. - We begin by proving proposition 4.5 for
the sets 

LEMMA 4.6. - For any proposition 4.5 is true with A replaced by
D.

In other words, we are going to prove proposition 4.5 first in the case
when H (C) + U (C) does not depend on 

Let us prove lemma 4.6.

Proof of lemma 4.6. - Let us consider D E The maximal partition @
of D is a subset of the maximal partition j~ of A and is an equivalence
class for the equivalence relation - of equation (140). Let us assume that
any is of class Let us notice that for any Gi, G2 we have

Let us call ~, (D) this common value. We can assume that Card ~ >_ 2,
otherwise proposition 4.5 is trivial for D (it tells nothing more than 
Assuming that Card ~ >_ 2, we see that for any S, S’ E (S, S’) > 0

(because S  S’ and S’ S). Let us notice also that M (S, = 0, i ~ S as

soon as v~ (S, S’) = 0 [because B (S) U S’ = B (S) U S’].
Let us consider Gland G 2 E !!fi .
For any integer k~2 let us call f?JJk the set of k-tuples (Si, ..., 

such that Sl =G1 and Sk = G2 and Sl + 1 ) > o, l = l, ... , k -1. For

any i~G1, j~G2 we have

Let us write down in full length what means the assumption that any
is of class There are positive constants To, a and a such that

for any S, S‘ E ~, S ~ S’, for any any j E S’, in the cooling framework
~ (To, H (~ (S)) - hence in % (To, H (D)) - there are ~1 (i. j) and
Q2 (i, j) of class ~r (H (D), a, such that

/1 ~ 2014ct/TB - E_ =B _ fC1 _B ! _ !C’~B ~ 11 ~f /C’~ C’tlB i
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and there are LKIs ~3 (i, j) and Q4 (i, j) of class ~l (H (D), a, such
that

Let us examine tirst the kernel M {L), We have

Let us call Qr, r = 2,4 the right member of this inequality. We have

But there exist positive constants K and ~, with 0  I such that
, _ _. ~ _ . _ _ ~_ . _ _ . ,

because the external state 0 is reachable trom any internal state ana is

absorbing. Hence

Hence there are positive constants To and K such that in the cooling
framework % (To, H (D)) we have

s ~’ ~ a. ~ ~ i _r_ ~ ~r r-~ v n T7 - H /1’ . ! l C ^11

and
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Let us prove now that there are positive constants and b such

that in the cooling framework % (To, H (D)), the kernels Q2 and Q4 are
of class ~ (H (D), a, b). We have to show that for any m, n 

and

From lemma 6.4 and from equation (152) we deduce that

and that

where Z is the maximal RKI in the first equation and the maximal LKI
in the second one.

According to equation (154), and changing k -1 into k we have

and

We have now, putting Z for Z (H (D), a, 

resp.
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hence

with

and

resp.

with

and

Hence, integrating by parts the left member of equation (163) we get

or

Cresp.

But
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(The same expression holds in the case of lett and right kernels.)
Thus equation (174) gives

yf -. ~

Hence there is a positive constant K’ such that for a suitable To, in the
cooling framework % (To, H (D)) we have

Hence we can find positive constants To and a’  a such that in the
cooling framework % (To, H (D)) we have

Thus in ~ H (D)) the kernels Qr, r = 2, 4 are of class

~ (H (D), a’, K’ -1 ). From this fact and equation (157) we deduce that
there exist positive constants To, oc, a and b such that in the cooling
framework ~ (TQ, H ((D)), there are a RKI ~2 and a LKI Q4 of class
~ (H (D), a, b) such that
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We will now seek a lower bound tor Ci2)~~, i E G 1. According
to equations (149) and (ISO), we have

with

As  ~~2~m~ we see that there exist positive constants To, a and b
such that in the cooling framework %(To, H (D)), Q1 is of class

~ {H {D), a, b). Moreover

and

[Compare with equations (153) and (156)].
Hence there are positive constants To and K such that in the cooling

framework % (To, H ( (D)) we have
. ~ , _ _ _ _ - .. _ . -- . ~ ~ -,

Hence mere are positive 10, a, a anu a sucn that in the cuunng framework

% (To, H (D)) there is a RKIQ1 of class D(H(D), a, b) such that
. _ .. - IT . _ .. ,. ,.... ~ . __ _ _ ~ . ~-.. ~-...~ ~ ~ i ~ ~ r~

Let us study the case of left kernels now. We have, according to equation
(149) and (151)
. -
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Let us notice now that

hence

Coming back to equation (187) we see that

with

Following the same route as for Q4, we deduce from this equation that
there are positive constants To, and b such that in the cooling
framework % (To, H (D)) there is a LKI Q3 of class ~dl (H (D), a, b) such
that

’1°he estimations tor kernels M (D, G2)Ji, 1 E G1, j E (.I2, are easy to denve
from those for kernels M (G1, and the equation

a ~ ir i-., ~ : J ~ ~ ~ ~ ~ ~n2014~ ~r w ~ ~ i i ~ ~~~~B

More preclsely, we see that M (1~, is of class
._ .

for some positive a in some framework G (To, H (A)).
End of the proof of lemma 4. 6.
For E let us put

and let us consider the potential kernel

DEFINITION 4.7:
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where

DEFINITION 4.8. - We will say that two disjoint subsets D and D’ of E
communicate if there exist such that q (i, j) > o. Now let D,
D’ and let ~ and ~’ be the associated elements of We will write

D’ and say that D’ is a successor of D i~ D_ D’, and D and

D’ communicate. Notice that in this case {i}~A, j~ B ({ i}) and for any
and any we have kA, D (G, G‘) > o.

The following step of the proof is

LEMMA 4.9. - For distinct D, such that there exist i E D, j E D’
with q (i, j) > 0, for any i ED, any j E D‘ there exist positive constants y (i, j),
To and a such that in ~ (To, H (A)) the kernel M(D, D’)i [resp.
exp ( - H 1 ) M (D, is of class ~r ((~ (D~) - ~ (D)) + ~ Y (i~ j),
H (A), oc) [resp. ~~ ((~, (D’) - ~, (D)) + + H (A), Y (i, J), H (A), a)~. Moreover if
G~M (D), G’ (D’) and 03BB (D’)  03BB(D) then for any iEG

Prooj . - We have according to proposition 2.1 U, tor any i E Ci, j E CT’,
__.~ -.._ ~ ~__..~ ~..__.~. ~..,: _ __.~ ~...._ ._

According to lemma 4.6 we know that M (D, G)i is ot- class

~r(0, kD (G, G), H (D), b) in the framework G(T0, H (D)) for suitable

positive constants To and b [let us insist on the fact that Cs) ~ 0].
Moreover is of class ~r ((~, (D‘) - ?~ (D)) +, q (G, j), H (D), b)
when it is non null [which is the case for at least one G E ~ (D) from our
hypothesis]. We conclude with the help of composition lemmas 6.8 and
6.10 (cf. appendix). The proof with left classes is of the same kind and is
left to the reader.

End of the proof of lemma 4.9.

LEMMA 4.10. - With the same hypothesis as in proposition 4.5, let us

consider D and D’ E ~ such that D and D’ are not comparable for the
relation  , then M (D, D’) = o.
Hence M(D, if and only if either D’ or D’ ~ D.
Proof. - Let us consider D and D’ E ~. Let us consider the associated

a and Let us consider and Assume that there is
i E G and j~G’ such that q(i,j)>0. As G and G’ are cycles, one of them
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is reduced to one point, thus or 

Hence either G  G’ or G’  G, and F and F are comparable. Thus if F
and F’ are not comparable, then M (D, D’) = 0.

End of the proof of lemma 4.10.
Let D1, D2~P, let and Consider i~G1 and

According to proposition 2.11

Let us call ~~ the set of sequences (Si, S2, ..., Sk) of lenth k such

that, M (Sl, l =1, ... , k -1 and M(Sk’ and such

that moreover

with the convention maL Sk+ 1 = D2.( The definition U1 m (D1, D2) is that

of the end of proposition 4.5.]
As * is finite and (~, (S~ + 1) - ~, (Sl)) + = 0 if and only if St  St + l, we see

that is empty for any large enough k.
More precisely we can remark that if ..., Sk) E all the Sl, ... Sk

must be distinct from one another [otherwise there is a loop that we could
suppress to obtain an other sequence of weight D~), but the weight
of a loop cannot be 0, ~ being an order relation, hence we get a

contradiction]. Thus for 

Let us call the set of sequences of length k (Si, ..., 
such that Sl = D1, M (S~, Sl + ~ ) ~ o, l =1, ... , k - l , M G2) ~ 0 and

(S 1, ..., Sk) ~ Let us put L = Card For any sequence

(Si, ..., Sk) we have, putting Sk + 1= D2, for some positive constant
(X,

where [x] is the integer par of x.
We can decompose equation (200) into

_ _ .. A ~. ~ ~. __ _ - _

Annates ue 
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with

We will prove first that for some positive constants To and a, the

kernel B is of class ~ - (H(Di, D2) + oc, H (A)) in the cooling framework
~ H (A)) .
From our preceding remarks we see that there are for any i, j belonging

to different cycles of vii (A) RKIs QI (i, j) and LKIs Q2 (i, j) of class
~ (H (A), a, b) in some % (To, H (A)) such that

with

Let us prove now a lemma about kernels Q~, r=1,2.

LEMMA 4.11. - There are positive constants To, a, K’ such that in the

cooling framework G (TQ, H (A)) the kernels = I ,2 are such that

and
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Proof . - We have

Let us remark that

hence abreviating Z (H (A), a, b) by Z, putting K’ = K Card ~~) and

and integrating by parts equation (209) [resp. equation (210)], we have
’4- r~t .

There are positive constants To and K3 such that in the cooling framework
~ 

2L _.,~ . _
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Hence there is a positive constant To such that in % (To, H (A)) we have

[resp. (’QZ)n-- ,n]

Let us examine A2 first. We have in % (To, H (A~) for a suitable positive
To,

__ ,

[cf equation (176) in the appendix. The expression is the same for right
and left kernels.]
Hence there are positive constants To, K3 and K4 such that in the

cooling framework ~ (To, H (A))

and consequently
/ / . B

Let us examine A~ now. Due to equation (220) there is a polynome
P with constant coefficients and positive constants To, a such that in

The function is bounded on hence there is a

positive constant KS such that
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Hence

In vew ot- equations (224) and (227) (which hold both in the case ot
right and left kernels) we see that there are positive constants To, a2 and
K6 such that in the cooling framework % (T H (A)) we have

n-l

End of the proof of lemma 4 . 11.
We deduce from lemma 4. 11 that there are positive constants TQ, K, a

and b such that in the cooling framework % (To, H (A)) there is a RKI Q ~
and a LKI Q2 of class ~ (H (A), a, b) such that

.u __r .~ ,~. - - , - - - ,

Hence

LEMMA 4. 12. - There are positive constants To and oc such that in the
cooling framework G (To, H {A)) the GTK B of equation (204) is of class
~~H (D1, D2) + a, H (A)).
As the sum in the definition of W is finite, we see by applying the

composition lemmas and lemma 4.9 that there are positive constants To,
a such that in % (To, H (A)) the kernel W is of class r (H (Dl, D2), ~ {i, j),
H (A), a) [resp. is of class

~~"~ TT-~ ~ ."r~~~AB B ’~ 1T~~~AB B B’7

with

in case or equivaienuy or equivalently

kA we deduce from the fact that for any S, such that

that
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[Indeed in this case for any (S 1, ... , S~) E ~k, for any /=1, ... , k -1,
and either or S~ = D2.]

End of the proof of proposition 4. 5.

5. PROOFS OF LARGE DEVIATIONS ESTIMATES

The aim of this section is to end the proof of theorem 2. 25.

Proof of theorem 2.25. - Let us consider some cycle C. We may assume
by induction that theorem 2. 25 is true for any strict subcycle of C.
We are going to prove first that C is of class ~ 1.
Let f be some state of F (C) and let j be in B (C). Let A = C - ~ . f ’ ~, and

let j~ be the maximal partition of A. Let (GS)s =1, ..., r be the natural
partition of C (the partition of C into its maximal strict subcycles). We
will assume that

and consequently that

We will also assume that f E G 1. It is easy to see that for

s= 2, ..., r. Let us put According to proposition 2 . 9 we
have

By induction we may assume that G I is of class ~ ~ . Thus there are
positive constants To, d, such that in the annealing framework (E, U, 
~(To, H’ (C)), d), for any iEB(Gl), M(Gi, E - G 1 ) f is of class

~‘ ((U~ - q (Gm i)~ H’ (Gl)~ ~.
We need the following lemma:

LEMMA 5 . 1. - With the above notations, we have for any G s’ s = 2, ..., r

Let us put A = C - G1 and let ~ be the maximal partition of
A, that is (C~~)~ _ ~, ... ~ r ~ We have for any G, G’ in ~
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because vA and ux coincide on  and  is not vA reachable from any
state of ~ - ~. Then we can identify the external state of ~A with G1.
Consider on -oYx the Markov kernel

with the above mentioned identification of the external state. Then v

coincide with vA on j~, because

The measure q (G) on d is v invariant. Let Z be the Markov chain
associated with v. It is easy to see that Z is recurrent and irreducible.
Then it is well known that, putting

we have

Equation (236) is the exact translation of equation (241 ) with some changes
in the notations.

End of the proof of lemma 5. l.
According to proposition 2.10 we have:

with

i nere are positive constants io ana c~ such that, m the annealing
framework

. for any s ~ [2, r], is of class

nt l/T T /!’~ B ~  T T /h1 B T T B /!’Y !’1 1

~ for any for any s E [2, r], for any according to proposi-
tion 4. 5,
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is of class 8 (H (A), kA G), H’ (C), d);
. for any G e ~l, for any i e G and any je B (G) r~ (E - G),

is of class

Applying lemma 6.8 to tis) f, Gt) and agam to
._ _ ..-. ~ .-" , _ ~ .. ~. ~ . _ ~ . ~. ~..~., .

with j E B (C), we tind that there is a positive constant b such that, for
each couple (s, t) E [2, r]2, the kernel

is of class

In the same way we see that

is of class

The expression of c’ is unimportant, the remarkable point is that

and that, G being a strict subcycle of G 1

consequently

Hence coming back to equation (242), we deduce, according to lemma
6.10, that E - C)] f is of class

where

Summing in s and using lemma 5 . I we get that
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Coming back to equation (235), we conclude that M ~C - ~ ~f - ~, E - ~)~ is
Ji 

lor some constant a.

The proof for M(C*, can be done in the same way as the

preceding estimation, and is left to the reader.

End of the proof that C is of class ~ 1.
We will now prove that C is of class and We will deduce from

it that C is of class ~5 and eventually that it is of class ~2.

Proof that C is of class 
We still consiser the natural partition (GS)s =1 ~ ..., r of C indexed in such

a way that

’l’hus we call s the number ot components ot the natural partition ot L
which are intersecting F (C).
Remark. - If H (G1) > 0 , then s  r. Indeed r~=1 is impossible, hence

there is in the natural partition of C a cycle of null depth.
We are going to prove the following lemma:

LEMMA 5 . 2. - For any positive constant (0, 1), there are positive
‘ 

constants To and a such that, in the annealing framework

putting for any such that To __> >_ T l
/!~ B - ’1 /T T !/‘~ B T T

we have, for any i E C,

Proof - Let us fix ~, and put

then (Gk)k=s+1, ..., r is me maximal partition or A.

The proof rely on the fact that we are getting out from A faster than
from C - A. We will establish to lemmas :

LEMMA 5. 3. - With the notations of lemma 5 . 2, for any ~, E ~o, 1),
there are positive constants To and a such that in the cooling framework
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~ (To, H ~G~ + ~ )), , any i E A, for any T ~ ~2 E [T 1, To] we have for the

corresponding

Proof - Using proposition 2.10 and proposition 4. 5 we see easily
that there exist positive constants To, d such that in the annealing frame-
work (E, U, q, for any iEA, 
is of class ~’’ (o, 1, H (Gs+ l’ d)). Hence there exist positive constants c, d
and a RKI Q of class!!) (H (G~ + 1), c, d) such that in the cooling framework
% (To, for any k~N

Thus

End of - the proof of lemma 5 . 3 .

LEMMA 5. 4. - Let G be a cycle of class There are positive constants

To, a such that in the cooling schedule ~ (To, H’(G)) for any i E G we have:
n

Remark. - As a consequence for any k = l, ..., s, any i ~ ~k, any
m = o, ..., N, we have
.^... _ . _ _ , _ _ _.

Hence there is a positive constant a such that

Proof q/ Let jr be some state in ana lei

G*=G- {/}. The idea of the proof is to introduce the last time when X
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visits f before leaving G. Using the assumption that G is of class ~~, we
find positive constants such that in the cooling framework

~ (To, H’ (G)) the following estimation holds:

End of the proof of lemma 5. 4.
Let us resume now the proof of lemma 5. 2 :
There exists To > 0 such that in the cooling framework G(T0, H(Gs+1))

we have for any To] and any i E C,

End of the proof of lemma 5. 2.
The following step towards the fact that C is of class ~4 is

LEMMA 5. 5. - For any (0, 1) there are positive constants To, a such
that in the cooling framework G(T0, H" {C)), , for any [T 1, To] the
subset ofC

is a concen tration set of class f~ (H" (C), T~~2, ?~ (H (C) - H" (C)), a).
Proof - Let us put as above

r
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Let To and a be chosen as in lemma 5.2 and let n be some integer
such that

Then

hence

Thus we can find m1  n such that

I TT !!"1 B TT /!~I B~

Let us put

Lowering the values 01 1 o ana a 11 necessary we can assume mat lemma

5.4 holds with these values for any 1, ..., s.

From now and up to the end of the proof of lemma 5. 5, let us work
in the cooling framework % (To, H" (C)).
Then, for any j~C-A we have

according to lemma 5.4 and equation (275). Applying lemma 5.2 to the

cooling schedule +n)n E N*, which is in G (To, H" (C)) if T is, we see
that
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Hence in the cooling framework % (To, H" (~)) we have, for any i E C

End of the proof of lemma 5 . 5.
We are able to prove that C is of class 

Let To and a be chosen such that both lemma 5.4 and lemma 5.5
work (it is possible since if any of these two lemmas is true for some

values of To and a, then it is true for any lower values of these parameters).
Moreover, lowering if necessary the values of a and To, we can assume
by induction hypothesis, that within the cooling framework % (To, H" (C)),
for any k =1, ... , s, F (Gk) is a concentration set of class

Let us work in the cooling framework % (To, H" (C)). Let be such
that Let be chosen such that

Let

Then we have for any A:==l, ...~ ~

/ .
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because
H

Let H"= max H" (Gk), we can find m  n such that
1 

fT T f r-’I ’" 

with this choice of m we have for any k =1, ..., s, for any j~Gk,
according to lemma 5.4

Hence for any i E C

End of the proof that C is of class 
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Proof that C is of class 
The first step is contained in the following proposition

PROPOSITION 5 . 6. - For any ~, E o, 1), there are positive constants To, ~c

such that in the cooling framework ~ (To, H’ (C)), for any T1~~ E [T1, To],
for any k = l , ..., s the subcycle Gk is a concentration set of C of class
~ (H‘ (C)~ T1~2~ ~ (H (C) - H‘ (C))~ a)~
Proof - We can assume that s ~ 2, otherwise proposition 5 . 6 reduces

to lemma 5 . 5.

We are going to do some kind of rescaling in the time variable by
introducing the following sequence of times:
By induction hypothesis , we know that for any k =1, ..., s, Gk is of

class ~~, thus there is a positive constant a, such that for any k,
/= 1, ..., r the kernel M (Gk, is a adjacent to

DEFINITION 5 . 7. - On the abstract state space ( I , .. , , r ), we consider
the Markov kernel fi9 defined by

,. , ..., , - - , , , - , .....

We call Y the associated Markov chain and consider the stopping time
- .r.~ ~ .... ~ n . ~r ~ .. 1 

With the help of 03C3 we dejine the Markov kernel I, ..., r J:
n//’ l L 1__lB T /~T - 7_l ~ ’[ T 7_~

DEFINITION 5. 8. - Let fF be some cooling framework. We define
V (H, To, oc, m) to be the sequence ,~ characterized by vo = m and

T f T T T B Y W ~ f ~ ~ W "B.

We will put V (H, To, a) f or V (H, To, oc, 0).

LEMMA 5 . 9. - any k, k’ = I , ..., s such that k ~ k‘,
for any the kernel

is null.

Proof. - If B (~ Gk. ~ ~, then either G~ or G~, is of null depth.
End of the proof of lemma 5 . 9.

LEMMA 5 . 10. - There are positive constants To, a such that in the

cooling H’ (C)), for any k, k’ E [ 1, s] such that k ~ k‘, , for
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any i E Gk, if ~ (k, k’) > 0, the kernel

is adjacent to

and satisfies

0n the other hand, k’) = 0, then R = 0.

Proof - Let us examine first the case when H(Gi)=0. Then H (G~) _ ©,
k =1, ... , t-, hence all the Gk, /r= 1, ... , r are singletons

A=0, thus M (Gk, A) M (A, Gk,) = 0 and

We conclude that the lemma is true in this case.

Let us assume now that H(Gi)>0, then according to lemma 5 . 9

M ~’Tk,)~~’ = o.
The fact that M (Gk, A) M (A, = 0 when (k, k’) = 0 is a conse-

quence of the fact that for any I, l’ =1, ..., r, M (Gi, Gl,) = o when
~o = l) = 0 as is easily seen from equation (239).

Let us assume that k‘) ~ 0.
We have according to proposition 2.10

When it is not null the kernel M (Gk, Gl) is adjacent to
. ~... i r . n, ~ i _ , _ ~t ~ ~ ~.. > >

and

for some positive constant a. There exists a positive constant a such that
the kernel

r
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is of class

We deduce trom lemma 6. 11 and equation tnat

and that the kernel M (Gk, A) M (A, Gk,) is adjacent to
,_._.., , , _~. _.__.~...,

Noticing that

ends the proof of lemma 5 . 10. -

Let us choose v such that
,-- , - , -

Let us call the sequence V(H(G1), T 1 ~ 2, 

LEMMA 5 . 1l. - With the above notations we have:

Proof of lemma 5. i 1. - We nave

End o f the proo f of lemma 5 . I 1.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



351LARGE DEVIATIONS FOR ANNEALING

DEFINITION 5 . 12. - We define the rescaled chain on C U ( A ), where A
is some abstract "external state", by

- -- - , - -,

This rescaled chain satisfies the following lemma:

LEMMA 5. 13. - There exist positive constants To, a and y such that in
the cooling schedule ~ (To , H (G1 )) , for any k, k’ ~ ~ 1, ..., s ~ such that
k~k’, for any i~Gk, for any we have

if ~ (k, k’) ~ 0 and

Proof of lemma 5 . 13.
Let us recall that

For any k, k’ ==1, ..., s, k ~ k’, we have for any i E Gk
r. /r’~ ~~~ ! r"~ ~

We are going to use repeatedly the decomposition formula of proposi-
tion 2 . 9. We can decompose M (C, Gk,) into
~ r ~ .-~ r, ~ ~ r i .. 

then we can decompose M (A U Gk, into
~ ~ /~ A ! t ~~ a ~~~ B ~ r r ~ ~ B ~ ~ r i rr 
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and into

Substituting each of these equations into the preceding one, we get

with

There are positive constants oc such that in the cooling tramework

% (To, H (G$ + ~ )), for any i E Gk, for any, m  N, we have
A1 ’M

In the same way, for there is l E [ 1, s] such that j~Gl and

Hence there is a constant K such that

. -t-i 1

Lowering if necessary the value of v we can assume that

hence we get that the above upper bound is itself bounded by
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where K’ is a constant. We can in the same way find a positive constant
K such that

Hence we get that there is a constant K such that in the cooling schedule
~ (To, H’ {~)) we have

__ , 1

There remain to examine the case when k = k’, that is to estimate

the lower bound is given by the fact Gk is of class ~$ and the upper
bound is given by substracting from 1 the sum of the lower bounds

obtained for 

End of the proof of lemma 5 .13 .

DEFINITION 5 . ~ 4. - We will get rid of the states Gk, k = s + ~ , ..., r

by putting
. ,. ~ r ., .~ .... > ,., ,...

and

DEFINITION 5. 15. - We can choose a positive constant x such that,

putting

and

Q is a positive Markov matrix.
Let us put
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and for any fixed T 1/2

Choose some i E C - A and put

Let us put

We have

Hence putting

we have

LEMMA 5. 16. - There are positive constants oc, a and b such that in the

cooling schedule ~ (To, H (Gl)) of lemma 5 . 13, with the above notations,
1 1 _ ~ ~ _. m ir~ ~ rr « w im _

[Let us recall that v is defined by equation (301 ).]

Proof of lemma 5 .1 ~.
According to the Perron-Frobenius theorem, the spectrum of W,

sp W = ~ 0, ..., ?~t _ ~ ~ satisfies:

and 0 is a simple root of the characteristic polynomial of W.
Let us consider 03BB ~sp (W), 03BB ~ 0. Let us write

. , ,.... _ . -,
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We have cos 03B80 and |03BB|~-2 For any E such that o  E  1 /4 we
have

hence

hence

Let us consider the Jordan decomposition of W on C:

where Yk is the projection on the kth caracteristic space Ek, ot dimension
rk, and where Nk is nilpotent of degree lower or equal to rk. Let us note

r r-

PQ the projection on  with direction Q+ Ek. We choose to identify a
k=1

matrix M of ~ls (~) with the endomorphism of ~s

It is easy to deduce the decomposition of Q = I + ~ W from the decomposi-
tion of W, we get

r ~

We can identify 0 Ek as the kernel of the linear form 
i=l i

matter of fact, if and p’ 1 = 0, then lim p‘ Q’~ = 0, thus p is in
n+oo

r

and
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r

It is thus enough to estimate |vQn] for vl =0, that is for ve 0 Ek. We

have:

r

Let us put

and

where

From equation (341) we deduce that

But

hence

It is not hard to deduce from this that there are positive constants a, b
such that for any measure p on E such that p (E) = 0 we have
) ~~2014! ~! I ~ ~ ~~ __ !1i lf~ B 11 /!~ BBr’-r’ _

This inequality combined to equation (334) and lemma 5 . 13
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ends the proof of lemma 5 . 1 6.
We will now establish a lemma of the same kind as lemma 5 . 2.

LEMMA 5. 17. - For any positive constant ~, there are positive constants

To and oc such that in the cooling for any
T1/2 E [T1, To] there is N E N such that

and jor any i E (C - A),
1

Proof of lemma 5. 17.
Let us put

2014 _

in the inequality of lemma 5 .16. We get
,

, , _ _ . ,_

hence for To small enough and  To,
) - i , « - «i?T. ,,1

thus

and

Moreover we can assume that

oy lowering its value it necessary, irom wmcn we oeauce tnat
-~.-r !Y B T H /T T ~~~B 1 T T / r1 B B *tB

End of the proof of lemma 5 . 1 ~.
From lemma 5 . 17 and lemma 5. 2 we deduce proposition 5. 6.
From proposition 5.6 and the induction assumption that for every

k= 1, ..., r the cycle Gk is of class ~3 we deduce that C is of class ~~ as
we had deduced that it is of class ~4 from lemma 5 . 2 and lemma 5.5.
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End of the proof that C is of class 

Proof that C is of class 
We will establish first the weaker proposition

. PROPOSITION 5 18. - There are positive constants To and a such that in
the cooling framework G(T0, H (C)), putting

we have for any i E C and 
. 1 

and

Proof. - Let us fix i E C and f E F (C). Let us put C* = C - ~ f ~ . As
we have established that C is of class we know that there exist positive
constants To, a, b and a such that in the cooling framework % (To, H’ (C))
there are RKIs (resp. LKIs) Q1 and Q2 of class ~ (H’ (C), a, b) such that

1 >l 1

Moreover

There is a positive constant (3 such that {/} is a concentration subset
of C of class

Let us put
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and

LEMMA 5. 19. - We have in the cooling 
~ ~ )

Proof of lemma 5 . 19. - We have

for T1 small enough.
Let us put R = R1 and

we have

N N
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but
D 2014 ~ 1

dmu

N

Hence
R,-1

End of the proof of lemma 5.19.
Now we have

R-l N
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Hence

We can make the same calculations for M (C, E - C)f, substituting j
with E and q (C, j) with q (C).

End of the proof of proposition 5 . 18.

LEMMA 5. 20. - For any i~C, for any m~N we have

Consequently

Proof - According to proposition 5.18

Let us put T1, a, m). We have
n/-//~ ___~_ _. )~~ _’B

Hence

End of the proof of lemma 5. 20.

Continuation of the proof that C is of class 
Let To, a be as in proposition 5 .18. Let be V (H (C), a).

Let us put
_ _ _ .~2014~ ~~~~~~~~
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For any n > N let k be defined by

Writing

we deduce from proposition 5. 18 and lemma 5.20 that for any /~+1 1
we have

Moreover

Hence

and
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We deduce from this that

In the same way we have

t M

Hence

hence

(The number 15 is of course somehow arbitrary.)

End of the proof that C is of class 

Proof that C is of class 

LEMMA 5. 21. - There are positive constants To and oc such that in the

cooling framework G (To, H (C)) we have for any i~ C, putting E = 
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Proof of lemma 5 . 21. - Let us put We

have

Hence we deduce from equation (386) that

It is an elementary calculation to deduce trom equation (:3yb) that

n

Let us notice that for xl, ... , x~ E [o, 1] such that £ 1/2 we have
l= 1

and

From equation (397), (398) and (399), we deduce that there are positive
constants To and a 1 such that in the cooling framework % (To, H (C)), we
have for any i E C:
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Let us consider now n ~ m and let I be such that

we have

hence ther are positive constants To and a2 such that in % (To, H (C)) we
have

End of the proof of lemma 5 . ~ I .

Continuation of the proof that C is of class ~2.
We have, for any f ~ F (C), putting C* = C - ~ , f ~ ,

Let us put

and

We will need the following lemma:

LEMMA 5. 22. - There are positive constants TQ and al such that in

the cooling H ~~)), the increasing kernel G is of class
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Proof - Let us put

It is easy to deduce from lemma 5.21 that G is of class

~r (o, for some positive a in a suitable framework

and that in the same framework is of

class ~l (H (C),1 /q (C), H (C), 
Let us notice now that there are positive constants To and a2 such that

f is concentratlon se t of class O(H’(C), T H(C)-H’(C) 2, 03B1) . Hence ,

putting

we have for any m and any k >_ R

Moreover

Hence, putting (C))/2, there are positive constants oc 1,

oc2, To, such that

For n  R
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and for n >_ R

In the same way

From equations (411), (412), (413) and (414) we deduce that Gm is of
class ~~ (0, l/q (C), H (C), a) for some a > 0 in a suitable cooling framework
~ H (C)).

Let n be fixed and define

we have

and

For m>R we have the equivalent of equation (412):
"_, 1
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for mR

Hence there are positive constants To, a such that in % (To, H (C)) the
kernel exp (H 1) G~ is of class ~~ (H (C), q (C) -1, H (C), a).
End of the proof of lemma 5. 22.
We deduce from the composition lemmas that there are positive con-

stants To and b such that in the cooling framework % (To, H (C)) the
kernel M (C, is of class

the kernel M (C, E - is of class ~r (0, 1, H (C), b), the kernel
~ / /V T !^IB Y H ! T T / /-’1B IT B

is of class

and the kernel M (C, E - exp ( - H 1) is of class

1 ~ H (C), b).
Moreover there are positive constants To, a, b, d and a such that in

% (To , H (C))
r. r.. ~ L .,. ~ _ ~ r i ~.. _._ ..-. -, ~ .~ ~ . f ~.. ~ l ._

From lemma 6.6 and lemma 6.5 we deduce that there are positive
constants To and a such that in % (To, H (C)) the kernel M (C, 
is of class .9) (H (C), a/3, (Remark : a/3 is of course not sharp.)
Hence M (C, is of class ~’’ (o, q (C, j)/q (C), H (C), a).

Let us examine now the case of left classes. We have

There are positive constants To, a, a, b and y such that in % (To, H (C))
there are LKIs Qi, Q2, Q3 and Q4 of class ~ (H‘ (~), a, b) and Q5, Q~
of class ~ (H (C), a, such that
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Hence there is ell > 0 such that

According to lemma 6.6 QS Q3 and Q6 Q4 are of class

a, for suitable positive constants a and a, hence we
deduce from equation (421) and lemma 6.10 that

~ ~~~~ ~ r... : ., - u 

is 01 class o --’ 

ior suitable 03B1>0 in a

suitable framework of type ~ (To, H (C)).

End of the proof that C is of class ~2.

End of the proof of theorem 2 . 25.

CONCLUSION

The proofs given in this paper are quite elaborate. Anyhow we feel that
the results were worth spending some efforts. The underlying ideas are
simple and proposition 4. 5 gives a clear understanding of the behaviour
of the system at low temperatures.
The computations of precise multiplicative constants, involving the flow

of the communication kernel q through the boundary of subsets of the
states space E, is a first step towards a study of the influence of the size
of E on the rate of convergence.

If we had not asked for so much precision on the constants, we could
have made shorter proofs. This will be done in a forthcoming paper
entitled "Rough Large Deviation Estimates" [3].
Applications of the present "Sharp Estimates" will also be given in a

forthcoming paper.
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6. APPENDIX

6.1. Comparison lemmas

We need some comparison lemmas concerning the tails Q~ ~’ and Q ~. m
of KIs. Here they are:

LEMMA 6. 1. - For any couple of RKIs Q 1 and Q2 such that

and any non-decreasing bounded function f : ~ ~ ~, for any m E ~, we have:

For any couple of LKIs Ql and (~2 such that

and any non-increasing bounded function f : ~ --~ ~, for any n E ~, we have:

LEMMA 6 . 2. - For any RKI Q such that, for any fixed n, Q~ ~’ is

non-decreasing, for any non-decreasing bounded function f : ~ -~ (~,

is a bounded non-decreasing function.
For any LKI Q such that, for any fixed m, n ~ Q~ ,~ is non-increasing,

for any non-increasing bounded function f : ~ --~ (F~,

is a bounded non-increasing function.

Proof of lemmas 6. 1 and 6 . 2. - The proofs are given for RKIs, the
case of LKIs is left to reader. The method is integration by parts. Moreover
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lemma 6 . 2 is a consequence of lemma 6.1. To prove lemma 6 .1 we write:
~’’ ir> >n ri__v - r’ ~ i~ w - I -> « ~n ~ 1 ri__~

We can see that lemma 6 . 2 is a consequence of lemma 6.1 by putting
and ~

End o f the proof of lemmas 6. 1 and 6. 2.
Let us introduce now a useful notation.

DEFINITION 6. 3. - Let S, a, b be positive constants. Let To be such that
a exp ( - SIT 0)  1. In the simple cooling framework ~ (To), we define the
maximal kernel of class (S, a, b) [resp. ~l (s, a, b)] to be the RKI

[resp. LKI] Z (S, a, b) characterized by

and

[resp.

Let us notice that

[resp.

w e araw tne following conclusion from o . 

LEMMA 6.4. - Let F be a cooling framework, and let S, a, b be positive
eonstants. Let Q1, Q2, ... , Qs be [resp. of class D (S, a, b).
We have

[resp.
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where s is a power in Z (S, a, b)S.

Proof - We can assume by induction that the lemma is true for s -1 I
kernels (it is trivial for one kernel). Then we have

[resp.

The second inequality is a consequence of lemma 6 .1 since
7 !~1 / A1 7 B s~ ~ i .. a

is non-decreasing [resp.

is non-increasing].

End of the proof of lemma 6 . 4.

LEMMA 6 . 5. - Let (E, U, q, ~o, ~ D), ~’) be an annealing frame-
work, let D, a, b be positive constants and let Qm be a RKI [resp. LKI] of
class a, b) a, b)]. Let D’ a positive constant such that
D’ > D. There are positive constants oc, To such that in ~ (To, D’) the kernel
Q is of class ~r (D’, a, [resp..9), (D’, a, 

Proof. - Case of a RKI:

Let us put R = N D, T1, D’-D 2, m). We have
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and

in a suitable framework G (To, D’).

Let us put oc = D ,_ D , then 
4 T1

n-, 1

and for n >_ R
~ _ ~

Case of a LKI:

Let us put

then

and

in a suitable framework G (-1 Q, D’).
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The end of the proof is just a transposition of the case of a RKI and is
left to the reader.

End of the proof of lemma 6. 5.

6.2. Composition lemmas

Now we give some lemmas about the composition of KIs:

LEMMA 6.6. - For any positive constants To, H, H’, a, b, a such that
H’  H, for any annealing framework of type (E, U, q, ~o, ~ (To, H), ~’),
for any increasing KIs Q, S such that Q is of class ~r (H, a, [resp.

(H, a, and S is of class (H’, a, b) [resp. ~l (H’, a, b)] there

are positive constants To, a~, ocl such that in ~ (To, H) the kernel QS is of
class ~ (H, al, 

Proof. - Case of 
Putting

u~e have
. _ _ ,..

and
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Case We have

Let m and n be fixed. For any R  n we have

let us put

With this choice of R we have

hence
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Moreover

We deduce from these equations that there are positive constants To,
such that in G (To, H)

M-l

End of the proof of lemma 6. 6.

LEMMA 6.7. - For any positive constants To, D, d, H1, H2, for any
annealing framework of the type {E, U, q, ~o, ~ (To, D), for any
increasing KIs G, R such that G is of class ~r (H l, D) [resp. of class
~L (H~ D)] and R is of class ~r (H2, D) [resp. of class ~~ {H2, D)] the
kernel GR is of class 61 (H + H2, D) [resp. of class ~l (H + H2, D)].

Proof - Let us notice first that if two increasing KIs Qi 1 and Q2 are
such that Q2 is of class ~L (H, D) [resp. ~l (H, D)] and if {Q2)m  {Q2)m,
m, then Qi is of class ~L (H, D) [resp. of class ~_ (H, D)].

Let us notice also that a KI Q is of class ~r (H, D) [resp. ~_ (H, D)] if
and only if, putting = Qm exp 1 ), Q is of class ~r (0, D) [resp.
of class ~t (0, D)].
With these two remarks in mind, we can restrict ourselves to the case

when H 1= H2 = 0 in the following manner. Let us put

then

hence it is enough to prove that GR is of class ~L (0, D) [resp. of class
~ (0, D)], thus it is enough to prove the lemma when Hi =H~=0.
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Let us point out now that, given positive constants To and D, an
increasing KI Q defined in the framework % (To, D) is of class ~r (0, D)
[resp. of class ~_ 0, D)] if and only if there are positive constants a and b
such that it is of class ~ (D, a, b).
Hence, using lemma 6.4, we see that there are positive constants To, a

and b such that in the cooling framework % (To, D) we have

But, putting Z tor Gr (D, a, b) [resp. tor Zl (D, a, b)] we have
n-1

hence there is a positive To such that in % (To, D)
n - 1

Thus there are positive constants To, a~, b2 such that Zr (D, a, b)‘
[resp. Z~ (D, a, b)~~ is of class ~ (D, a2, b2) in the framework % (To, D).
According to equation (466) the same is true of GR.
End of the proof of lemma 6 . 7.
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LEMMA 6. 8. - For positive constants To and D, consider the annealing
framework (E, U, q, ~o, ~ (To, D), Let d be some positive constant
and let G, R be some finite increasing K~s depending on the cooling schedule

Assume that G is of class [resp. of class
~~ (H1; al, D, and that exp ( - 1) Rrn is of class ~’’ (H3, a2, D, d)
[resp. of class a2, D, d)]- Then, and H2  H3, there
exists a positive constant d’ such that the composed kernel GR is of class
~r (H1- H2 + H3, a~ a2, D, d’) [resp. of class ~l (Hl - H2 + H3, al a2, D, d’)].

Proo, f. - Let us remark first that, given positive constants To, H, D,
a, b, given a cooling framework % (To, D) and an increasing KI G defined
in this framework, G is of class ~r (H, a, D, b) [resp. of class ~t (H, a,
D, b)] if and only if there are positive constants a, c such that the kernel
Gm is of class D (D, c, b) and

With this in mind, we put

and we find that
, .. ’B , .

But according to lemma 6 . 7 GR is of class ~"L (H~ + H3, D) [resp.
D)], hence there are positive constants To, a2, b such that in

the framework % (To, D)

is of class b2).
Moreover

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



379LARGE DEVIATIONS FOR ANNEALING

[resp.

End of the proof of lemma 6 . 8.
We will also need a lemma on the sum of KIs of class ~:

LEMMA 6 . 9. - For any positive constants To, D, Hi, H2, a and d such
that H1 for any annealing framework of the type (E, U, q, ~o,
~ (To, D), I), for any KIs G and R such that G is of class ~’’ (H ~, a, D, c~
[resp. of class ~l (H1, a, D, d)] and R is of class ~r D) [resp. of class
~~ (H2, D)] the kernel G + R is of class ~r (H1, a, D, d) [resp. of class
~l a~ D~ ~] ~
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Proo_f: - There are positive constants To, ai, bl, a, K such that in the

cooling schedule % (To, D) there are RKIs Q1, Q2 and Q3 and LKIs Q4,
Qs and Q6 of class Çfi (D, a1, b~) such that

Hence putting

Q2 is a RKI and Q 5 a LKI of class fØ (D, ai , and we have

End of the proof of lemma 6. 9.

LEMMA 6. lo. - For positive constants To and D, consider the annealing
framework (E, U, q, ~o, ~ (To, D), Let d, H be positive constants and

let G, R be two KIs. Assume that G is of class ~r (H, aI, D, cl) [resp.
~l (H, al, D, a~] and that R is of class ~r (H, a2, D, d) [resp. ~l (H, a2,
D, d)]. Then G + R is of class ~r(H, a1+a2, D, d) [resp. ~l(H, a1 + a2,
D, Wl.
The proof is analogue to that of lemma 6. 9 and is left to the reader.

LEMMA 6. 11. - Let (E, U, q, be an energy landscape. Let G, K
be two finite increasing KIs. Let To, a, b, c be positive constants, let Hand
S be such that 0 _ S  H. Assume that in ~ (To, H), G is adjacent to c ~ (H)
and that K is of class ~r (0, a, S, b), then the product G K is also adjacent
to c ~ (H).

Proof of lemma 6. 11. - There is oc > 0 such that G is 03B1-adjacent to
We can assume without loss of generality that a _- {H - S)/2. For

any m _ n 1 _ n 3 such that
, ,
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let us put

then for some ~3 > 0 and some d> 0

Hence as

for To small enough in G (To, H) we have
M~

Moreover

hence

Hence nl, oc) and consequently for some ~i > 0 in some

H)
n., n ~

But
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and

hence there exist Pi > 0 and ~i2 > 0 such that

and such that

Hence for some positive To, in % (To, H),

Thus for some (32 > 0

Letting n3 go to infinity we get that for any I> m

We conclude the proof from equations (495) and (497).
End of the proof of lemma ~ . 11.
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