Mesures dominantes et théorème de Sanov
Annales de l'I.H.P. Probabilités et statistiques, Tome 28 (1992) no. 3, pp. 365-373.
@article{AIHPB_1992__28_3_365_0,
     author = {Dinwoodie, I. H.},
     title = {Mesures dominantes et th\'eor\`eme de {Sanov}},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     pages = {365--373},
     publisher = {Gauthier-Villars},
     volume = {28},
     number = {3},
     year = {1992},
     mrnumber = {1183991},
     zbl = {0764.60031},
     language = {fr},
     url = {http://archive.numdam.org/item/AIHPB_1992__28_3_365_0/}
}
TY  - JOUR
AU  - Dinwoodie, I. H.
TI  - Mesures dominantes et théorème de Sanov
JO  - Annales de l'I.H.P. Probabilités et statistiques
PY  - 1992
SP  - 365
EP  - 373
VL  - 28
IS  - 3
PB  - Gauthier-Villars
UR  - http://archive.numdam.org/item/AIHPB_1992__28_3_365_0/
LA  - fr
ID  - AIHPB_1992__28_3_365_0
ER  - 
%0 Journal Article
%A Dinwoodie, I. H.
%T Mesures dominantes et théorème de Sanov
%J Annales de l'I.H.P. Probabilités et statistiques
%D 1992
%P 365-373
%V 28
%N 3
%I Gauthier-Villars
%U http://archive.numdam.org/item/AIHPB_1992__28_3_365_0/
%G fr
%F AIHPB_1992__28_3_365_0
Dinwoodie, I. H. Mesures dominantes et théorème de Sanov. Annales de l'I.H.P. Probabilités et statistiques, Tome 28 (1992) no. 3, pp. 365-373. http://archive.numdam.org/item/AIHPB_1992__28_3_365_0/

[1] R. Azencott, Grandes déviations et applications, École d'Été de probabilités de Saint-Flour VIII-1978, LNM 774, Springer-Verlag, 1980, p.1-176. | MR | Zbl

[2] R.R. Bahadur et R. Ranga Rao, On Deviations of the Sample Mean, Ann. Math. Stat., vol.31, 1960, p. 43-54. | MR | Zbl

[3] R.R. Bahadur et S.L. Zabell, Large Deviations of the Sample Mean in General Vector Spaces, Ann. Probab., vol. 7, 1979, p. 587-621. | MR | Zbl

[4] R.N. Battacharya et R. Ranga Rao, Normal Approximation and Asymptotic Expansions, Wiley, 1976. | MR | Zbl

[5] E. Bolthausen, On the Probability of Large Deviations in Banach Spaces, Ann. Probab., vol.12, 1984, p.427-435. | MR | Zbl

[6] N. Bourbaki, Espaces Vectoriels Topologiques, Masson, 1981. | MR | Zbl

[7] D.M. Chibisov, An Investigation of the Asymptotic Power of the Tests of Fit, Theory Probab. Appl., vol. 10, 1965, p. 421-437. | MR | Zbl

[8] I. Csiszár, Sanov Property, Generalized I-Projection and a Conditional Limit Theorem, Ann. Probab., vol. 12, 1984, p. 768-793. | MR | Zbl

[9] M.D. Donsker et S.R.S. Varadhan, Asymptotic Evaluation of Certain Markov Process Expectations for Large Time-III, Commun. Pure Appl. Math., vol. 24, 1976, p. 389-461. | MR | Zbl

[10] R.M. Dudley, Distances of Probability Measures and Random Variables, Ann. Math. Stat., vol. 39, 1968, p. 1563-1572. | MR | Zbl

[11] I. Ekeland et R. Temam, Analyse convexe et problèmes variationnels, Dunod, 1974. | MR | Zbl

[12] J.A. Fill, Asymptotic Expansions for Large Deviation Probabilities in the Strong Law of Large Numbers, Probab. Theory Rel. Fields, vol. 81, 1989, p. 213-233. | MR | Zbl

[13] R. Fortet et E. Mourier, Convergence de la répartition empirique vers la répartition théorique, Ann. Sci. École Norm. Sup., vol. 70, 1953, p. 266-285. | Numdam | MR | Zbl

[14] P. Groeneboom et G.P. Shorack, Large Deviations of Goodness-of-Fit Statistics and Linear Combinations of Order Statistics, Ann. Probab., vol. 9, 1981, p.971-987. | MR | Zbl

[15] P. Groeneboom, J. Oosterhoff et F.H. Ruymgaart, Large Deviation Theorems for Empirical Probability Measures, Ann. Probab., vol. 7, 1979, p. 553-586. | MR | Zbl

[16] T. Inglot et T. Ledwina, On Probabilities of Excessive Deviations for Kolmogorov-Smirnov, Cramér-von Mises and Chi-Square Statistics, Ann. Stat., vol. 18, 1990, p.1491-1495. | MR | Zbl

[17] E.B. Manoukian, Modern Concepts and Theorems of Mathematical Statistics, Springer, 1986. | MR | Zbl

[18] P. Ney, Dominating Points and the Asymptotics of Large Deviations for Random Walk on Rd, Ann. Probab., vol. 11, 1983, p.158-167. | MR | Zbl

[19] P. Ney, Convexity and Large Deviations, Ann. Probab., vol. 12, 1984, p. 903-906. | MR | Zbl

[20] J. Reeds, Correction Terms for Multinomial Large Deviations, Asymptotic Theory of Statistical Tests and Estimation, Academic Press, 1980, p. 287-305. | MR | Zbl

[21] J. Robinson, T. Höglund, L. Holst et M.P. Quine, On Approximating Probabilities for Small and Large Deviations in Rd, Ann. Probab., vol. 18, 1990, p. 727-753. | MR | Zbl

[22] I.N. Sanov, On the Probabilities of Large Deviations of Random Variables, Selected Translations in Mathematical Statistics and Probability 1, American Mathematical Society, 1961, p. 213-244. | MR | Zbl

[23] C. Stone, On Local and Ratio Limit Theorems, Proceedings of the Fifth Berkeley Symposium, vol. II, University of California Press, Berkeley, 1967. | MR | Zbl