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ABSTRACT. - A Wiener process, defined as the coordinate process X
on Wiener space, remains a semimartingale if the canonical filtration is
enlarged by the information about the endpoint Xi. Elimination of the
resulting drift by means of a Girsanov transformation leads us to a new
measure under which X is again a Wiener process. But this measure does
not coincide with Wiener measure P; in fact it is singular to P.
We study this apparent paradox in the general case where X ~ is replaced

by a random variable G such that X remains a semimartingale in the
filtration enlarged by G.

Key words : Wiener space; enlargement of filtration; Girsanov’s theorem; h-transforms.

Un processus de Wiener, defini comme processus des coor-
données X sur l’espace de Wiener, reste une semimartingale dans la
filtration canonique augmentée par l’information sur le point final Xl.
L’élimination du drift moyennant une transformation de Girsanov produit
une nouvelle mesure sous laquelle X est toujours un processus de Wiener.

Classification A.M.S. : primary 60 J 65, 60 G 44; secondary 60 H 05, 60 J 45.
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570 H. FOLLMER AND P. IMKELLER

Mais cette mesure n’est pas identique à la mesure de Wiener P ; en fait,
elle est singulière par rapport à P.
On etudie ce paradoxe dans le cas general ou X 1 est remplacé par une

variable aléatoire G telle que X reste une semimartingale dans la filtration
grossie par G.

1. INTRODUCTION

Anticipation of some random variable G on Wiener space means that
we pass from the canonical filtration (~ t)o __ t _ 1 to the larger filtration
(%t)o # t s 1 with 

- -

With respect to this new filtration, the coordinate process X on

Q=C([0, 1]) is no longer a martingale under Wiener measure P. However,
under some regularity conditions on G, X will be a semimartingale of the
form

where W is a Wiener process with respect to and P. If, for
example, we anticipate the endpoint G=Xi of the Brownian path, then
the decomposition ( 1 ) is given by

What happens if we try to eliminate the drift appearing in ( 1 ) by means
of a Girsanov transformation? In the case the densities

define consistently a new probability measure Q on each a-field 
0~1, which turns the coordinate process into a Wiener process up to
each time t  1. But any such measure Q on C([0, 1]) should coincide with
Wiener measure P, in constrast to the fact that Mt is not equal to 1.
The purpose of the present paper is to investigate this apparent paradox.

In section 2 we consider the case In this case, the martingale in
(3) does determine a probability measure. But this measure will not live
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on Q=C([0, 1]). Instead, it can be constructed as the product measure

on the product space

This corresponds to a decoupling of the Brownian path and the endpoint
Xi. The projection of Q on the first coordinate coincides with Wiener
measure P. On the other hand, if Wiener measure is identified with the
joint distribution P of (X, Xl) on Q, then Q is singular to P. These are
the two sides of the paradox.

In section 3 we consider a general random variable G such that X is a
semimartingale with respect to (~t)o  t  1 and P. In general, the process
M defined by (3) will only be a local martingale. The associated measure
Q will again be the product of Wiener measure and the distribution of G,
but it will be determined only up to some life time ~1. This fits into
the general construction of the measure associated with a nonnegative
supermartingale in [3], [4]. But in our particular situation, we can give an
explicit description of the projective limit structure which is involved in
the general case. This is illustrated by an explicit example.
The question discussed in the present paper came up in the study of

anticipating Girsanov transformations in [2], and we thank R. Buckdahn
for various discussions. Of course the question could be posed in a general
framework, where the random variable G on Wiener space is replaced by
an anticipating process (Gt) on some filtered probability space. As pointed
out by a referee, such an extension would involve the techniques develop-
ped by Song [12].

2. THE "PARADOX"

Our basic probability space is the canonical Wiener space (Q, !#’, P),
with Q=C([0, 1]) and Wiener measure P. The coordinate process is
denoted by the canonical right-continuous filtration by
(~t)o_t_m Let 

- -

It is well known that X is a semimartingale in the filtration 
and that its canonical decomposition 

- -

is given by the process of bounded variation
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572 H. FÖLLMER AND P. IMKELLER

where

and W is a Wiener process with respect to the measure P and the filtration
(see Jeulin [7]).

Let us now try to eliminate the drift appearing in (4) by means of a
Girsanov transformation. As a natural candidate for the density of
a new measure Q, which turns X into a martingale, we define

Clearly is a non-negative supermartingale with respect to

and P, with continuous paths and initial value Mo =1. In the
sequel, the transition densities of the Wiener process are denoted by

LEMMA 1. - For 0  t  1 we have

In particular,

and

and so (Mt)o ~ t ~ ! is a martingale which is not uni, formly integrable.

Proof. - Itô’s formula, applied to the function
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yields

This implies

and so we have (8). To prove E (Mt) =1, just note that

This implies that is a martingale. By the martingale convergence
theorem, Mt converges a. s. to an integrable random variable Mi as t -~ 1.
To identify the limit, we note that, for a. a. o, there is a sequence 
converging to 1 such that X 1 = Xr~ (w). Then

and so we have Mi=0, P - a. s. In particular, this implies that 
is not uniformly integrable. 

-

Remark. - Note that the martingale is of the form

where the functions

Vol. 29, n° 4-1993.
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are the extreme points in the convex set of non-negative space-time har-
monic functions h (x, t) with h (0, 0) =1. We recall that the distribution
PY of the Brownian bridge with initial point 0 and terminal point y at
time 1 is equivalent to P on each a-field ~ with and that

Now suppose that the Girsanov transformation works in the usual

manner, i. e., that there exists a probability measure Q on the same space
Q=C([0, 1 ]) such that

Then would be a Wiener process under Q with respect to

and this would extend to the terminal time t =1. 
and so Q may be viewed as the distribution of This would

imply that Q is identical to Wiener measure P, in obvious contradiction
- to (14). In fact, (10) would imply that Q is singular to P.

Here is the solution of this apparent paradox. It is true that the

martingale resp. the supermartingale with M~=0,
determines a probability measure. But, as in the general situation of [4],
this measure will live on a suitable projective limit space. In our specific
situation we can give an explicit description. In fact, the measurable space
(Q, ~t) can be identified with the space

endowed with its product a-field Thus, the projective limit
space is given by f2 endowed with the o-field

We identify Wiener measure with the joint distribution of (X, X1) under
P, i. e., with the measure P on Q defined by

where J.1 denotes the standard normal distribution N(0, 1). Thus, P couples
the two coordinates by identifying the second one, namely y, as the

endpoint X 1 «(0) = limt r 1 Xi (w) of the first one. The density in (8) can be
identified with
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Let us now define Q on Q as the product measure Under Q,
the two coordinates are completely decoupled. Since

due to ( 13), we have

for and and so

In other words, the probability measure induced by the martingale
under P, or rather by under P, is given by Q. For

the diagonal 
-

in Q we have

and so Q is singular to P:

On the other hand, the projections Q and P of Q and P on the first
coordinate both coincide with Wiener measure P:

This explains the two sides of the "paradox".
We will now investigate the structure of the measure Q in a more

general setting.

3. ENLARGEMENT BY A RANDOM VARIABLE

Let G be a random variable on (Q, ~ ) with distribution PG. G will
take the role that Xi was playing in section 2. Correspondingly, we take

Vol. 29, n° 4-1993.
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In general, X need not be a semimartingale under P in this new filtration
(see for example [7]). Thus, we need additional regularity assumptions on
G. Let

be a regular conditional probability distribution of X given G. We assume
that

Then we can choose a measurable function exi (o) on R x [0, 1] x Q such
that, for any y E R,

(i ) ex’ is an adapted process with

(ii ) the martingale

is given by

(see appendix).
Consider the process exG defined by

Note that aG is adapted with respect to (~t)o ~ t  1 and satisfies

P-a. s., for 0 _ t  1. Now X decomposes in the following manner.

THEOREM l. - Under condition (18), X is a semimartingale with respect
to and P. Its decomposition is given by

where

and W is a Wiener process with respect to and P.
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Proof. - Under each measure P’, the process

is of the form

and so W is a Wiener process with respect to and P’. Choose

For and 
-

and so W is martingale with respect to and P. Since the pathwise
quadratic variation of W is given by 

-

Levy’s theorem implies that W is a Wiener process with respect to

Remark. - Theorem 1 is a variant of well-known results on the enlarge-
ment of filtration (see Jacod [6], and also Jeulin [7], Jeulin, Yor [8], Jacod
[5]). Jacod [6] formulates conditions in terms of a regular conditional
probability distribution

of G given X on ~ ~, He shows that if

then W is a semimartingale with respect to easy to see

that both (18) and (25) are equivalent to the condition that the joint
distribution P(x, G) of X and G is absolutely continuous with respect to
the product measure P0Pc on 

For our purposes, it is convenient to use version (18).
Following the lines of section 2, let us now try to eliminate the drift

appearing in theorem 1 by means of a Girsanov transformation. We first
consider the case where

VoL 29, n° 4-1993.
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In that case, the process

is a martingale with respect to and PY for PG - a. e. y. As in
the proof of theorem 1, this implies that the process MG defined by

is a martingale with respect to and P. Under the measure

the a-fields 1Ft and « (G) become independent. To see this, fix 
and choose a set A in ~t, say of the form

Then we have

Thus, the martingale MG induces a decoupling between G and the behavi-
our of X up to each time t  1.

Let us now describe the new probability measure determined by MG.
As in section 2, we imbed our initial space (Q, ~ ) into the product space

We identify Wiener measure P with the joint distribution P = G) of X
and G under P:

If ~ : (y, m) H çY (o) is a random variable on D, the distribution of ç under
P is the same as the distribution of ~G under P, due to the fact that P is
concentrated on

In particular, we define the processes

Annales de /’Institut Henri Poincaré - Probabilités et Statistiques
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and the filtrations

For the extended processes, this means for example

In particular, M is a martingale with respect to and P. The

process X will be considered as a process on Q depending only on the
first coordinate. Thus,

is the 03C3-algebra generated by X.

THEOREM 2. - Under condition (27), the measure determined by the
martingale MG resp. M is given by the product measure

on (Q, ~), i. e.,

In particular, we have

Proof. - Both statements follow from the decoupling in equation (29).
In the case under discussion, the relationship between P and Q is

analogous to the case G = W 1 at the end of section 2. If G has no atoms,
P and Q are orthogonal. If G is not a. s. constant, Q is not absolutely
continuous with respect to P. This will be proved under the more general
condition ( 18) after theorem 3.

This concludes the discussion under the special condition (27). Let us
now consider the general situation (18). In this case, the process MY

defined in (28) is only a local martingale with respect to (~ t)o s t  1 and
PY, and we have 

-

for AEt and 1. A sequence of localizing stopping times is defined
by

We set
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and introduce the life time

and the o-field

THEOREM 3. - The measure associated the local martingale M is
given by the restriction of the product measure

to the 03C3-field G03B6-. More precisely, we have

Proof - Fix 0 ~ t ~ I . have

But

since the non-negative martingale Z}’ will not become positive after reach-
ing 0. Thus,

This completes the proof.
Remark. - For a non-negative supermartingale parametrized by [0, 1)

on a space H which is closed under certain projective limits, there is a
unique associated measure on the predictable a-algebra on n x (0, 1]. For
a local martingale, this measure is supported by the graph of a suitable
life time ~, and so it may be viewed as a measure on the underlying space
n, equipped with the o-field of events observable before time ~; see [3]
and [4]. In our special case, we have provided a direct construction on f1,
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without first passing to a product space 03A9 x (0, 1]. As an alternative, we
could have used the general results in [ 1 ].

COROLLARY I . - Suppose that ( 18) is satisfied. If G is not P - a. s.

constant, then Q is not absolutely continuous with respect to P:

If PG has no atoms, then Q is singular with respect to P:

Proof. - Using the localizing sequence of stopping times introduced
before theorem 3, we define the (~ )~g N-martingale

Since for absolute continuity of P with respect to PY is equivalent
with saying that P (A (., y)) =1 for

we know that

Assume first that we have

Then P’ for any Y E R. Hence (38) tells us that .

whereas

Hence in this case

as asserted. Next assume that PG has no atoms. Then even for

any y E R. Hence by (39)

and hence

Let us finally compare conditions (18) and (27) by briefly discussing an
example.

Vol. 29, n° 4-1993.
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Example. - Let A = ~ i =1 ~ . Take

G= 1~ and let us consider

If we set (x=P(G=0), P=P(G==1), we clearly have

and therefore

where Px denotes Wiener measure starting in x. From this equation, it is
immediate that

Moreover, (40) and (41) yield

This implies

Thus G03B6- is given by F in the first coordinate on the set

Ax{l}~A’’x{0}, and on the complement. The measure Q is
given by the restriction of to ~~ _ . Hence ’t acts as

explosion time on the set A x { 0 } U AC x {1}, on which Q 1 P. There is
no explosion on the complement, since there we have Q ~ P.

4. APPENDIX

Under condition ( 18) we will now justify the properties of the exponen-
tial martingale Z given by formula (21) which were claimed in section 3.
The main problem we have to face lies in the fact that completion of the
natural filtration of X by the nullsets of g- may disturb the local absolute
continuity condition (18); for example, Brownian bridges live on nullsets
of P. For this reason, we choose the following variant of completion. For
0~1 let ~ t be the class of null sets of the right regularization of

and suppose that each g- t is completed by the system of

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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countable unions of sets in U ~. Thus, the o-algebra property carries

over to the completions, and, more importantly, ( 18) is inherited from the
natural filtration of X, thus not affecting generality. This choice has one
advantage: it restores the "usual conditions" on any subinterval [0, t] with
tl, if we as the global a-algebra. We therefore are able
to just quote the results needed from the general theory of processes. With
a little more effort, we could work quite as well in the right regularization
of the natural filtration.

PROPOSITION 1. - Let (18) be satisfied. Then there is a measurable

function

which is non-negative and continuous in t such that the following is true
(i ) for any ZY is a martingale with respect to P),

Proof. - Fix 0 _ to  1. Due to our choice of filtration it is obviously
enough to prove corresponding statements on the space R x [0, to] x Q,
with respect to the filtration which is defined to be the natural
filtration of X on [0, to], modified so as to fulfill the "usual conditions"
with respect to the nullsets of First of all, these conditions
guarantee that for any y eR we may choose a non-negative continuous
martingale NY such that

Next fix a rational qe [0, to]. Due to Stricker, Yor [13] there exists a

Hq~B-measurable function

such that

Note that we use (18) here. More precisely, there exists a set 
such that

Let

Vol. 29, n° 4-1993.
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Then also

and is increasing in q. Let now

Then

is measurable and for any ye R S’ is a stopping time with respect to
With these prerequisites we may now define M, first on the

rationals, then on the reals. For rational to] let

Note that for any (m, y) e Q x R, the functions and N’(m) agree on
the interval [0, S~(o)]. We may therefore continue with our definition. For

let

We thus obviously obtain a function which is measurable in its three
variables, which is non-negative and continuous in t and which fulfills (i ).
To prove (ii ), it is enough to remark that SY=IP-a.s. for 
as follows from Fubinis theorem.

In the following proprosition, Z is described as an exponential martin-
gale.

PROPOSITION 2. - Let (18) be satisfied, and let Z be given by
proposition 1. Then there exists a measurable function

which is adapted in (t, 00) such that for y e R the following is true

Proof - We may fix 0~ol again and work on the interval [0, to]
as in the preceding proof. In the same way as before we may construct a
measurable function

which is adapted in (t, co) and fulfills

Annales de /’Institut Henri Poincaré - Probabilités et Statistiques



585A PARADOX ON WIENER SPACE

(iii ) 
(iv) the measure induced by on the Borel sets of [0, to] is absolu-

tely continuous with respect to Lebesgue measure for all (00, x R.

Here ~X, Y] stands for the mutual variation of the processes X and Y.
We may therefore choose a measurable function

which is adapted in (t, o) such that for any yeR

Now set

Observe that for we have to conclude that (i )
holds. Finally, to obtain (ii) from (42) and (43), it is enough to argue in
the usual way (see Rogers, Williams [It], p. 81).
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