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Martin boundaries of some branching processes
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ABSTRACT. - We investigate the Martin boundary of some branching
processes, namely Feller’s continuous-state branching process, the critical
continuous-time Galton-Watson process and the Yule process. The Martin

boundary provides an integral representation of the non-negative space-
time harmonic functions of these processes.
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RESUME. - Nous decrivons ici la frontiere de Martin des processus de

branchement suivants : le processus de branchement de Feller, le processus
de Galton-Watson critique a temps continu et le processus de Yule.

La frontiere de Martin donne une representation intégrale des fonctions
harmoniques dans le temps non-negatives de ces processus.

1. INTRODUCTION

In this paper we study the integral representation in the convex set of
all non-negative space-time harmonic functions for some branching pro-
cesses. We specify the extreme points in this set. The set of extreme points
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182 L. OVERBECK

will be called the Martin boundary. We will apply the general theory of
sufficient statistics and extreme points formulated in Dynkin [Dyl]. The
extremal space-time harmonic functions are obtained as limits of the
Martin kernel, that is, as a limit of a quotient of transition densities. Every
space-time harmonic function determines a new process, the so-called h-
transform, which describes the original process conditioned on a specific
limit behaviour.
Here we consider the critical binary continuous-time Galton-Watson

process, the Feller process and the Yule process. For the Feller process
and its approximating "particle process", the critical binary continuous-
time Galton-Watson process, the Martin boundaries are [0, oo ) and an
extra point 0. The extremal space-time harmonic function h0 correspond-
ing to 0 is the constant function 1 and so the h0-transform is the original
process. For Oc 00 the hc-transform is the process conditioned on the
limit behaviour

For c = 0 we have hoes, x) = x and the limit behaviour of the ho-transform
is described by

The Martin boundary of the Yule process with intensity X is [0, oo). For
0 _ c  oo the hc-transform is the Yule process conditioned on the event

All basic properties of branching processes we use can be found in [AN].
For results on Martin boundaries for supercritical branching processes in
discrete time we refer to [AN, ch. 11.9], [Lo], [Co] and [Dul], [Du2]. The
Martin boundary of some related processes, namely the d-dimensional
Bessel process, which is related to the Feller process, and the Poisson
process composed with a symmetric binomial distribution, which is related
to the Yule process, are considered in [Sa].
The question of determining the Martin boundary of these branching

processes came up in the investigation of superprocesses conditioned on
their limit behaviour. The results of this paper on critical branching
processes are used in [Ov2] in order to clarify the structure of certain H-
transforms of superprocesses, in the sense of [Dy2], and of their approxim-
ating branching diffusions. If h is a space-time harmonic function of the
Feller process, then the function H (t, ~,) : = h {t, ~, ( 1 )), where ~, is a finite
measure on [Rd, is a space-time harmonic for the superprocess which only
depends on the total mass ~, ( 1 ). In the same way, the results on the Yule
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183MARTIN BOUNDARIES

process and the critical Galton-Watson process are used in [Ovl] ] to

investigate the conditional behaviour of the corresponding branching diffu-
sions.

2. GENERALITIES

We consider always the canonical model (Q, ~, P) with

Here the state space is of the form S=[0, oo ),
~ 0, 1, 2, ... } or { 1, 2, ... }. P is the probability measure on Q corre-
sponding to a Markov transition function p on S and to the initial state 1
at time 0.

Let p (s, x ; t, dy) be the Markov transition function and P: the corre-
sponding semigroup acting on functions. A family h = (h (t,. )tO of non-
negative functions is called space-time harmonic, if

for any s __ t. We now recall some of the results in Dynkin [Dyl]. Let SP
be the class of all space-time harmonic functions h normed by the condition
h (0, 1 ) =1. In our cases we have p (s, x; t, . )  p (o, 1; t, . ), and so the
assumption 10. 2. A of [Dyl] ] is satisfied. Then the class SP admits the

following integral representation. Every h E SP is represented by a unique
measure h on the extreme points Spe of SP, i. e.,

We call the set S~ the Martin boundary of p. The extreme points he are
characterized by the condition

where 8 indicates a Dirac measure.
For every hE SP the h-transform P h is defined as the probability measure

on (Q, ff) having density h (t, Xt) with respect to P on fft:

By Fubinis theorem, the integral representation (1) implies

Vol. 30, n° 2-1994.



184 L. OVERBECK

According to the last formula in section 10 of [Dyl] ] all extremal space-
time harmonic functions satisfy

where the Martin kernel K is defined by

for s _ u. In particular, every extremal space-time harmonic function

appears as a limit of K (s, x; un, yun) for un - oo and for some sequence
(yun) C S.

Suppose we known that K (s, x; u, yu) converges to an extremal hC (s, x)
iff a (u, yu) - c for some "rescaling" function a. Then we say that (xu, u)
converges in the Martin topology to c iff a (u, xu) - c, and we write

(xu, u) - c. We use the set of these limit points as a parametrization of
the Martin boundary S~.

In the sequel we will calculate all possible limits in our special situations
and decide which are space-time harmonic and extremal.

3. YULE PROCESS

The Yule process, also known as the linear pure birth process, describes
the evolution of a population of particles. Each particle lives for an exp (03BB)-
distributed time and produces 2 new particles when it dies, independent
of all other particles. Considered as a point process with state space

S= {1, 2, ... }, the Yule process has the intensity À Xt.
THEOREM 1. - The Martin boundary of a Yule process with parameter X

is [0, oo). A sequence (xt, t) converges in the Martin topology as t - o0

to a poin t a in the Martin boundary iff converges to a as t - oo .

The extremal space-time harmonic functions are of the form

in particular we have h° (s, I) = b 1 l. According to [AN, p. 111 ] there exists
a non-negative random variable W such that e -’~t X t -~ W a. s. as t - oo .

The measure P~a is the conditional distribution P~ [ . ~ W = a]. Under the

process
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185MARTIN BOUNDARIES

Thus the process X has a state independent but time dependent intensity
a X under in contrast to its behaviour under P~ where the intensity is
state dependent but time independent.

Proof. - Using the explicit formula for the probability generating
function in [AN, p. 109] and the branching property it is easy to prove
that

This gives the Martin kernel

It is immediate that K (s, 1, kn, tn) converges as tn  oo, iff exp ( - X tn) kn
converges to some a E [o, oo ). For a sequence (kn, tn)n with a the
Martin kernel converges to the function ha (s, I) defined by (4).
These functions solve the equation A f (s, /)=0, where A is the generator

of the space-time Yule process, i. e.

Using now the formulation of a martingale problem associated with a
Markov process as in [EK, ch. 4, sec. 7] one can prove that (h° (s, 
is a martingale (details can be found in [Ovl]). Therefore ha is space-time
harmonic for every a.

Using the set Aa : _ ~ X t e -’~t --~ a } in (2), we get that

Hence which is the definition of extremality.
Because

the measure ~,~ is the distribution of W under P~. This yields for h = 1 :

for every 00)) and BE. So is the distribution of the Yule
process conditioned to have W=c. Therefore, and because by [AN, p. 127]
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186 L. OVERBECK

(X (~, -1 log ( 1 + t W -1 ))t &#x3E; o is a Poisson process with intensity 1 under P~
conditioned on W, the process (X (~, -1 log ( 1 + tc -1 ))t &#x3E;_ o is a Poisson pro-
cess under This implies, that the process 

-

Remarks 1. - In [Ov 1 ] we used the fact that the Yule process is a
random time change of the Poisson process (as above, cf. [AN], p. 127)
in order to investigate the Martin boundary of the Yule process by time-
reversing. In a first step, we investigated the Martin boundary of the
Poisson process. It turns out that the Martin boundary of the Poisson
process with intensity X is [0, oo), that (kt, t) - a in the Martin topology

iff kt - a and that the extremal space-time harmonic functions are
t

this fact is also mentioned in [Sa]. It follows by the Girsanov transforma-
tion, that the ha-transform is the distribution of a Poisson process with
intensity a. In a second step, we used again the time change to arrive at
the results of Theorem 1.

2. Formula (5) implies that

is the generator of the ha-transform. It can be written as:

or as

The formulas (6) and (7) can be interpreted as follows. The generator (6)
may be viewed as the generator of a Yule process with state and time

dependent intensity a ~, e’~S 1 . The formula (7) refers to a branching processp Y 
k 

() gp

with time dependent intensity a X eÀs and state dependent splitting behavi-

our _ k -1 p2=1. This means that each particle on dying gives risek p2 k 
p Y g g

to 2 new particles with a high probability if only a few particles are alive.
But if many particles are alive this probability is low.

3. There is a strong connection between the Martin boundary of the
Yule process and the Martin boundary of the embedded discrete-time
Galton-Watson process which is investigated in [Lo]: Define = Xns

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



187MARTIN BOUNDARIES

such that (X~)~o is a supercritical Galton-Watson process with generating
and mean ~:= 2014/~(1)=~. Then a result of

~o

[Lo] says that the extremal space-time harmonic functions are

with a E [0, ~) and g (i, . ) the i-th convolution of the density of W. In our
case W is exponentially distributed [AN], p. 128. Hence (8) reduces to

With i ) : i ) one can establish a 1-1-correspondence
between the space-time harmonic functions of the Yule process and those
of the imbedded Galton-Watson process.

4. CRITICAL BRANCHING PROCESSES

Whereas the Yule process describes a supercritical branching process
with exponential growth, a critical branching process is a process where
the average number of offsprings is one. Because of the random fluctuation
every path dies out despite the fact that EXt= 1 for all t. The simplest
model is binary splitting: Every dying particle gives rise to 2 new particles
with probability - and to 0 p articles with the same probability. For

computational simplification we assume that the intensity of the exponen-
tially distributed lifetime of every particle is 2. The generating function
F(~, t) : = E is given by (cf. [Se], chapter 1.8)

Using the branching property we are led to the transition function for 
°

s  t:

Vol. 30, n° 2-1994.
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o

(with the convention £ = 0). We are now prepared to prove the following
i= 1

theorem:

THEOREM 2. - The Martin boundary of the critical branching process is
[0, ~) U(~}. The Martin topology M is given by

and

The extremal space-time harmonic functions are

The hC-transform for c E [0, oo) has the generator

Proof . - We have to find sequences (tn, such that tn  oo and

the limit of the Martin kernel K (s, k, tn, xn) exists and is finite.
There are three different cases:
1. k = o:

This gives h (s, 0) =1 or = 0 according as 0 or not.

The limit is the space-time harmonic function h0 (s, k) =1.

Annales de I’Institut Henri Poincaré - Probabilités et Statistiques
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Let us first consider the convergence of

The first factor converges to 1 if tn  00. The second factor converges
iff - ce [0, oo]. If - ce [0, oo] the second factor converges to
exp ( - cs). For the sum in (12) there are three cases:

(a) For c=0,
the summands with l &#x3E; 1 converge to 0 and the summand with 1= 1

converges to k. Hence the function hO (s, k) in (10) arises as a limit
of the Martin kernel.

(b) For c = oo,
the Martin kernel converges to 0 because the exp-function growths
faster then any polynomial.

(c) For Oc 00,
the Martin kernel converges to

So the possible extremal space-time harmonic functions are the functions
h‘ with defined in (9)-( 11 ) and the function

h °° (s, k) - p 1, o ~ (k, s) .
The space-time infinitesimal generator of this Markov process is

It is a tedious but not difficult calculation to prove that A h (t, k) = 0 for
all these functions except h °° . Hence the same reasoning as in section 3
shows that they are space-time harmonic (see [ov 1 ]).

Let us now prove extremality of hC for ce[0, oo ) U { Qf } . We first
observe that for we have

Ph~ [A] = P [A] =1. But, because hC (t, 0) = 0 for ce[0, oo), it follows

Vol. 30, n° 2-1994.
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Equations (13) together with (2) implies

and so h ~ is extremal. The same reasoning with the set QBA shows that
the support of the representing measure of hC for 0 is contained in
[o, oo ) .

Setting k =1 in the formula (11) and (10) for /f we conclude

By the unicity of Laplace transforms the equation = b~ follows. This is
equivalent to the extremality of hC. The formula for Ahc is proved by using
the Girsanov transformation [Ja, p. 225] and the harmonicity of hC in

order to formulate the martingale problem solved by cf. [Ovl].
Remarks. - 1. We can interpret Pn‘ as the distribution of an interacting

branching process in the following sense. If there are k particles alive

each has an exponentially distributed lifetime with parameter

h~(t, k-1)+h~(t, k+ 1) . When one particle dies it produces 2 (resp. 0)
h~ (t, k)

new particles with probability

For c = 0 the generator can be written as

or as

The generator (14) exposes interaction described above while (15) describes
a branching process with state dependent immigration. The waiting time
for the next event is exp (2 k)-distributed. But when the next change

happens it is an immigration of one particle with probability 1 k, or a
binary branching with the remaining probability 1- .

k
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2. Because is a P’-martingale iff (hC (t, Xt). is a P-martin-
gale, the above calculations also solve the problem of finding the Martin
boundary of for every ce[0, oo). In these cases the Martin
boundary is given by [0, oo). The extremal space-time harmonic functions
of P °, e. g., are given by

3. This remark explains the special role of P °.
We will first prove that P ° can be viewed as the process conditioned

on non-extinction, then comment on its limit behaviour and finally explain
the relation with Palm measures of critical branching Brownian motions.

Because the set of non-extinction has probability 0 we first condition
on the Let B E t, then

The last expression converges to E Xt] as T -~ Hence we have for
every the equation

In order to exhibit the weak limit behaviour under P °, we calculate the
generating function of Xt under P ° as

yields the convergence of the Laplace transform of xt
t

uder P ° to ( 1 + 1 ~, ) 2 .This is the Laplace transform of a random variable
with density xe-x ~~ (x), the density of the r-distribution.

So Xt converges under P ° in distribution. It is well known that xr
t t

converges also under the conditioned measure P [. Xt &#x3E; 0], namely towards
the exponential distribution. But the Martin topology is connected with

the convergence of That is similar to the case of Brownian motion

where N (0, 1) but where the behaviour at the Martin boundary
is described by the convergence of 

Vol. 30, n° 2-1994.
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These results are proved for the discrete time model in [AN, p. 58],
where P ° corresponds to the Q-process, and for the continuous-state
model in [EP] and [RR].

Branching Brownian motion and their Palm measures (Pt, ~o, ~&#x3E;, a E ~d
are considered in [CRW]. The Palm measure Pt, a can be viewed as the
branching Brownian motion conditioned on the event that one particle
populates a at time t. It turns out that the particle which populates a has
the branching law of P ° . This fact is not surprising since the ancestors of
this particle build a branching process conditioned on survival.

5. FELLER’S PROCESS

Feller’s continuous-state branching process is a diffusion process with
state space [0, oo ), with generator

(cf. [F], [KW]) and it satisfies the stochastic differential equation

where is a Brownian motion. Its branching property is expressed
in term of Laplace transforms by

Feller’s process is obtained as the limit of a sequence of rescaled critical

branching processes studies in section 4. In the n-th approximation the

mass of each particle is  and its lifetime is exponentially distributed with
n

intensity 2 n.
In order to identify the Martin kernel we investigate the transition

function given by the Laplace transform (cf. e. g. [KW])

Nt

At the same time, this is the Laplace transform of L Y~y ~, where Nt is
i= 1

Poisson distributed with parameter x/t and the are i. i. d. exponentially
o

with parameter (with the convention that £. = 0). Hence the tran-
i

sition density p (s, x, t, y) of Xt with respect to the reference measure

Annales de I’Institut Henri Poincaré - Probabilités et Statistiques
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m = Lebesgue measure + bo is given by

where I _ 1 is the modified Bessel function of order -1.

THEOREM 3. - The Martin boundary of Feller’s continuous state branch-
ing process is [0, ~) ~{ ~}. The Martin topology is the same as in

theorem 2. The extremal space-time harmonic functions are

Under the process Xt satisfies the stochastic differential equation

For c = 0 this equation reduces to

Proof. - First, the Martin kernel for is

where

For x = 0 the Martin kernel is 1~ o} (~n). exp ( - 1 which gives
h (s, 0) = 0 or 1 according as ~ = 0 for all but finitely many n or not.

For jc&#x3E;0, the Martin kernel is This yields

the space-time harmonic function h~ (s, x) = 1.

Vol. 30, n° 2-1994.
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For yn &#x3E; 0, x &#x3E; 0 there are again three different possibilities

where h° and h~, OC 00 are defined in (18) and (19). Further, it is easy
to show that for every ce[0, oo ) the function h~ satisfies

It follows that hc is space-time harmonic for every ce[0, oo ) U {~}. The
same reasoning as in the section 4 proves the extremality of these functions.
The stochastic differential equation for X under follows as in

section 4 by using the Girsanov transformation [Ja], p. 225. D

Remarks 1. - In [Sa] the Martin boundary of Bessel processes of order
d is computed for d E 0 ~. Up to a scaling, the Feller process can also
be described as the squared Bessel process of order 0 ([RY], p. 409), and
so our results are related to the results in [Sa]. The squared Bessel process
of order r &#x3E;__ 0 is the solution of the stochastic differential equation

In [RY], p. 411, the transition densities with respect to Lebesgue measure
of all squared Bessel processes of a strict positive order r are computed.
However, the formula in [RY], p. 411, does not extrapolate to the case
r = 0 because the transition probabilities of the Feller process give positive
mass to 0 [see equation (16)].

2. As in remark 2 of section 4, the Martin boundary of any process
P ~‘‘ with ce[0, oo) is also given by [0, 00).

3. Here again the measure can be viewed as the process conditioned
on survival (cf. [EP], [RR] and [KW]). Acording to Remark 1., the coordi-
nate process under Ph° is the squared Bessel process of order 4. This result
is already mentioned in the context of Bessel processes in [PY], where
also the transition function (16) can be found.
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