@article{AIHPB_1995__31_2_325_0, author = {Bretagnolle, Jean and Klopotowski, Andrzej}, title = {Sur l'existence des suites de variables al\'eatoires s \`a s ind\'ependantes \'echangeables ou stationnaires}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {325--350}, publisher = {Gauthier-Villars}, volume = {31}, number = {2}, year = {1995}, mrnumber = {1324811}, zbl = {0819.60035}, language = {fr}, url = {http://archive.numdam.org/item/AIHPB_1995__31_2_325_0/} }
TY - JOUR AU - Bretagnolle, Jean AU - Klopotowski, Andrzej TI - Sur l'existence des suites de variables aléatoires s à s indépendantes échangeables ou stationnaires JO - Annales de l'I.H.P. Probabilités et statistiques PY - 1995 SP - 325 EP - 350 VL - 31 IS - 2 PB - Gauthier-Villars UR - http://archive.numdam.org/item/AIHPB_1995__31_2_325_0/ LA - fr ID - AIHPB_1995__31_2_325_0 ER -
%0 Journal Article %A Bretagnolle, Jean %A Klopotowski, Andrzej %T Sur l'existence des suites de variables aléatoires s à s indépendantes échangeables ou stationnaires %J Annales de l'I.H.P. Probabilités et statistiques %D 1995 %P 325-350 %V 31 %N 2 %I Gauthier-Villars %U http://archive.numdam.org/item/AIHPB_1995__31_2_325_0/ %G fr %F AIHPB_1995__31_2_325_0
Bretagnolle, Jean; Klopotowski, Andrzej. Sur l'existence des suites de variables aléatoires s à s indépendantes échangeables ou stationnaires. Annales de l'I.H.P. Probabilités et statistiques, Tome 31 (1995) no. 2, pp. 325-350. http://archive.numdam.org/item/AIHPB_1995__31_2_325_0/
[1] Exchangeability and related topics, Springer Lecture Notes in Math., Vol. 1117, 1983, pp. 1-198. | MR | Zbl
,[2] Maximal independent stochastic processes, Ann. Math. Statist., Vol. 32, 1961, pp. 704-708. | MR | Zbl
,[3] Théorie des probabilités, en Russe, Gostechizdat, Moscou-Leningrad, 4e éd., 1946.
,[3 bis] Ergodic Theory and Information, Wiley Series in Probability and Mathematical Statistics, 1965. | MR | Zbl
,[4] A stationary, pairwise independent, absolutely regular sequence for which the central limit theorem fails, Probab. Th. Rel. Fields, Vol. 81, 1989, pp. 1-10. | MR | Zbl
,[5] On the strong law of large numbers for pairwise independent random variables, Ann. Math. Hung., Vol. 42, 1983, p. 319-330. | MR | Zbl
, et ,[6] The central limit theorem for m-dependent variables, Proc. Cambridge Philos. Soc., Vol. 51, 1955, p. 92-95. | MR | Zbl
,[7] Une lettre, Janvier 1991.
,[8] Cinq variables aléatoires binaires stationnaires deux à deux indépendantes, Prépubl. Institut Galilée, Université Paris XIII, Novembre 1991, p. 1-38.
et ,[9] Sur les hypothèses constructibles concernant des suites de variables aléatoires binaires, Idem, Décembre 1991, p. 1-10.
et ,[10] An elementary proof of the strong law of large numbers, Z. Wahrsch. verw. Gebiete, Vol. 55, 1981, p. 119-122. | MR | Zbl
,[11] Pairwise independence of jointly dependent variables, Ann. Math. Statist., Vol. 32, 1962, pp. 290-291. | MR | Zbl
et ,[12] Dependence of random variables, The Amer. Statist., Vol. 25, 1971, p. 35. | Zbl
,[13] Some pairwise independent sequences for which the central limit theorem fails, Stochastics, Vol. 23, 1988, pp. 439-448. | MR | Zbl
,[14] On a sequence of almost deterministic pairwise independent random variables, Proc. Amer. Math. Soc., Vol. 29, 1971, pp. 381-382. | MR | Zbl
,[15] On a set of almost deterministic k-independent random variables, Ann. of Prob., Vol. 2, 1974, pp. 161-162. | MR | Zbl
,[16] Uses of exchangeability, Ann. of Prob., Vol. 6, 1978, pp. 183-197. | MR | Zbl
,[17] Pairwise statistical independence, Ann. Math. Statist., Vol. 36, 1965, pp. 1313-1317. | MR | Zbl
,[18] Exemple de processus pseudo-Markoviens, C. R. Acad. Sci. Paris, Vol. 228, 1949, pp. 2004-2006. | MR | Zbl
,[19] Pairwise independent random variables, Ann. of Prob., Vol. 8, 1980, pp. 170-175. | MR | Zbl
,[20] Cauchy - distributed functions of Cauchy variates, Ann. Math. Statist., Vol. 38, 1967, pp. 916-918. | MR | Zbl
et ,[21] Independence and Fair Coin-Tossing, Math. Scientist, Vol. 10, 1985, pp. 109-117. | MR | Zbl
,[22] A pairwise independent stationary stochastic process, Statistics and Probability Letters, Vol. 3, 1985, pp. 195-199. | MR | Zbl
et ,[23] Nth order Markov chain with every N variables independent, J. SIAM, Vol. 10, 1962, pp. 537-549. | MR | Zbl
et ,[24] Counterexamples in probability, John Wiley & Sons, 1987. | Zbl
,