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ABSTRACT. - We study the convergence speed of generalized simulated
annealing algorithms. Large deviations estimates uniform in the cooling
schedule are established for the exit from the cycles in the spirit of Catoni’s
sequential annealing work [2]. We compute the optimal convergence speed
exponent proving a conjectured of R. Azencott [1].

RÉSUMÉ. - Dans ce papier, nous étudions la vitesse de convergence des
algorithmes de recuit généralisé. Nous établissons des estimées de grandes
deviations uniformes en le schema de temperature pour les temps et les
lois de sorties des cycles dans l’esprit du travail de O. Catoni pour le
recuit séquentiel [2]. Nous obtenons alors la valeur de l’exposant optimal
pour la vitesse de convergence sur les schemas de temperature décroissants
conjecturée par R. Azencott [1].
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1. INTRODUCTION

1.1. From sequential to generalized simulated annealing

Sequential simulated annealing is a very general and flexible method
for finding good solutions to hard optimization problems. Its principle is

surprisingly simple and was formulated in the early 1980s [12]. Consider
a real valued function U to be minimized on a finite set E called the state

space (or the configuration space). Now, let an irreducible Markov kernel
q on E be given and define for all T > 0 the Markov kernel QT on E
such that for any 2, j E E, i ~ j

where x+ denotes the positive part of x. For T = 0, denote Qo =

QT. An homogeneous Markov chain X = (Xn)nEN with

transition kernel Qo satisfies U(Xn) > and is trapped in a finite
number of steps into a local minima of U. For T > 0, QT is a perturbation
of the previous mechanism allowing hill-climbing moves. Assuming that

q( i, j) = q ( j, i ), QT admits 7fT as unique equilibrium probability measure
which satisfies for all i E E

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



301ROUGH LARGE DEVIATION ESTIMATES FOR THE OPTIMAL CONVERGENCE.

The parameter T is physically interpreted as a temperature and one verifies
that

This particular feature is the key of the simulated annealing approach.
Considering a decreasing cooling schedule T == i.e. a sequence

of decreasing temperatures, we define an inhomogeneous Markov chain
X = (Xn)nEN with transition kernel 1 

at time n. The intuitive idea

is that for sufficiently slowly decreasing cooling schedules, the law of Xn
should be close to 03C0Tn and we should have

Many results are known on sequential simulated annealing. Since Hajek’s
paper [8], one knows that there exists H > 0 such that for all

decreasing cooling schedules T vanishing to zero, (4) holds if and

only if +oo. This problem of convergence can be

extended to the more general problem of convergence on level sets

Ex = { i e E ] U(i) > min U -~ ~ ~ for A > 0. This problem has
been successfully solved by O. Catoni in [2] who proves that there exists

ra > 0 such that if T is a decreasing cooling cooling schedule vanishing
to zero, then

More crucial for practical use of sequential simulated annealing is the rate
of convergence. More precisely, let

Catoni’s work [2] gives that there exist aa > 0, aa > 0, K1 > 0 and

K2 > 0 such that

The lower bound says that the mass in Ex cannot vanish faster than a

power of 1/n and that this power is upper bounded by Conversely, the

upper bound says that for each N E N there exists a decreasing cooling
schedule T N such that for this cooling schedule

Vol. 32, nO 3-1996.



302 A. TROUVE

Note that we may have T~~ ~ and in fact the proof of (8) shows
that one should designed the cooling schedule according to the horizon.
The value of a~, and ~xa are given explicitly in function of U and q (even
if their numerical computation is an hard combinatorial problem). Since for
sufficiently small value of A we have aa = c~a we deduce that if

then we cannot expect for the convergence to the set of global minima of
U a better speed exponent with decreasing cooling schedules than 

In many practical situation, computer scientists have proposed modified
version of the sequential simulated annealing in order to increase the speed
of convergence. One of the most promising issues is the parallelization of the
algorithm in order to distribute the computations on several processes. As an
illustration of such an approach, let us have a look on sequential simulated
annealing in image processing (see [6]). In this case, the configuration
space E is a product space E = LS where S is a set of pixels and L a
set of labels (usually grey levels). For each i E E, z(s) is the value of

the grey level at pixel s E S. The sequential annealing process has in this
framework the following particular form. One define first a family of local
updating kernels by

where il’,s is the configuration j E E such that j ( s ) = l’ and j (Sf) = 
for s’ ~ s (only the pixel s is changed). Now, let a family 
exhausting the elements of S be given (generally we choose a sweeping
line by line of the image). We define the family Q = of transition

kernels of the sequential simulated annealing by

Rigorously speaking, QT cannot be written of the form (1) and the previous
results do not apply. However, an extension of them to this case does not
imply deep modifications of the simulated annealing theory since 7rT is still
the unique invariant probability measure of QT and since QT is reversible
for T > 0. Now, consider the following parallelization of the sequential
process: assume that one has a small processor attaches to each pixel and
assume that all the pixels are updating synchronously according to the local
updating rule. We define then a new transition matrix given by

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



303ROUGH LARGE DEVIATION ESTIMATES FOR THE OPTIMAL CONVERGENCE...

One can expect that the speed of convergence is increased by a factor I
since all the labels are updating in one unit of time (instead of ~S~ I units

of time previously). However, some very important changes have occurred
owing to the interactions between processors and we have to generalize the
framework of simulated annealing. Instead of the form (1), we can only say
that there exist an irreducible Markov kernel q on E, a real valued number
x E [1, +oo and a family of non negative numbers (V(i, such that

For the classical sequential annealing, we have x = 1 and V(i, j) _
(U(j) - U(i))+ so that V( i, j) - V(j, i) = U(j) - 7(z). This property
which is a consequence of the reversibility of the sequential annealing
transition kernel does not hold any more for the kernel KT (in fact, there
does not exist any function W such that V (i, j ) - V ( j, i ) = W ( j ) - W (i) ).
As a consequence, none of the previous results can apply and we need an
extended theory to handle the convergence properties of parallel version of
sequential simulated annealing. This extension will be the main subject of
this paper. We should emphasize the fact that many stochastic optimization
algorithms fall into the scope of this extension and not only the parallel
versions of the sequential annealing for image processing presented above.
This extension covers in fact all the small random perturbations (with
discrete time and finite state space) of dynamical systems as developed by
Wentzell and Freidlin in [5]. The point is to handle here the convergence
properties of such processes when the perturbation vanishes with time.

1.2. Theoretical framework

We introduce now precisely our theoretical framework. Let E be a finite
set which will stay fixed throughout this work.

DEFINITION 1.1. - Let ~ E [1, and let q be an irreducible Markov
kernel on E. We say that a continuously parametered family Q = (QT )T?:.O
of Markov kernel on E is admissible for ~ and q if and only if there exists
a family V = (V(i, such that

For T = 0, we take the convention that = The family
V is called the communication cost and the set of all the admissible families

Q for q and ~ is denoted by A(q, x).
Vol. 32, n° 3-1996.
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Remark 1. - As a main extension of the standard sequential simulated
annealing transition kernels, we do not assume that q is symmetric and and
V can be completely arbitrary.

In the following definition, we define the probability measure associated
with an abstract annealing process on E.

DEFINITION 1.2. - Let X = (Xn)nEN be the coordinate process on EN.
For all 9 = (Q, T, vo) where

. Q = is a continuously parametered family of Markov kernels
on E,

. T = is a sequence of non negative real valued numbers called
cooling schedule,

. vo is a probability measure on E called the initial distribution,
we denote Po the unique probability measure on EN for the a-algebra

n > 0) such that X is under Po a Markov chain with initial

distribution vo and transition kernel QTn+1 at time n.
We can now define the extended notion of generalized simulated

annealing.

DEFINITION 1.3. - Let q be an irreducible Markov kernel on E, let

x E and let X = be the coordinate process on E~.
We say that X is a generalized simulated annealing process (G.S.A.) with

parameter (q, r~, P) if there exist Q E A(q, x), a cooling schedule T and
an initial distribution vo such that P = Po with 8 = (Q, T, vo). Moreover,
as usual, P( ( X o = i ) will denote the probability measure Pgi where for
all i C .E, 8i = 

Remark 2. - An equivalent framework has been considered by Hwang
and Sheu in [10]. Their results will be reported below in this section.

Considering an arbitrary communication cost V, a G.S.A. is not defined
around an explicit energy function U. However, there exists an implicit
function W introduced by the definitions below which plays for low

temperatures the same role. This function depends on the communication
cost V through a functional on A-graphs that we define now.

DEFINITION 1.4. - Let A C E. We say that a set g of arrows i-+j in
A~ x E is an A-graph iff:

(1) for each i E A c, there exists an unique e E such that i-t j e g;

(2) for each i E A c, there is a path in g ending on a configuration in A.

We denote by G(A) the set of the A-graphs.
Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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DEFINITION 1.5. - Let q be an irreducible Markov kernel on E, let 03BA E

[1, +oo [ and let Q E A(q, K-). Let V be the associated communication cost.
For each i E E and each g E G({i}), we denote V(g) = V(i, j).
We say that W : is the virtual energy associated with Q if and
only if for each i E E

Remark 3. - Since Tj(i, j)  if and only if q(i, j) > 0 and since
q is irreducible on E, one easily verifies that W( i)  The above

construction of W has been given by Wentzell and Freidlin in [5] as well
as the following proposition.

PROPOSITION 1.6. - Let q be an irreducible Markov kernel on E, let

n E [1, +oo[ and let Q E A(q, ~). For each T > 0, QT is irreducible and
we denote its unique invariant probability measure. Then if W is the
virtual energy associated with Q we have

Remark 4. - This proposition shows that E E ( W (i) _
min W ~)-~1 when the temperature vanishes. Moreover, J-LT(i) is of the
order of exp( -(W(i) - for low temperature which should
be compared to of the order of exp ( - ( U ( z ) - min U) jT) for the
sequential simulated annealing. Hence a G.S.A. is a optimizating process
for the virtual energy.

1.3. Outlines

In the general framework, one can easily show that the generalized
simulated annealing algorithm converges for sufficiently slowly decreasing
cooling schedule to the global minima of a virtual energy function W. For
cooling schedule Tn = cj(ln(n +2)), a necessary and sufficient condition
on the value of c for this convergence is given in [3], [10], [9] and [13]
without giving the optimal convergence speed in particular because such
a result needs large deviation estimates uniform in the cooling schedules
as established by O. Catoni in [2]. Our main goal will be here to prove
that the approach of O. Catoni can be successfully extended to the general
framework and gives the value of the optimal convergence speed exponent
conjectured by R. Azencott in [1].
We will start in Section 2 with the cycle decomposition of the state space

E. Roughly speaking, a cycle is a subset of E which can be considered as

Vol. 32, n° 3-1996.
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a point for sufficiently low temperature. One of their important properties
is that at constant temperature T, the exit time of a cycle II is of order

whatever the starting point in II is. The non negative number
is called the exit height of II. The cycles are structured on a tree

whose root is E and leaves are the singletons since two cycles II1 and II2
are either disjoint or included one in the other. We will recall the recursive
construction of the cycles which depends only on the communication cost
V of the G. S .A. and we will show the link between the virtual energy and
the cycle decomposition.

In Section 3, we will introduce for each ACE,. i E A and j E E
a new cost called the renormalized communication cost in A.

Starting from i E A, the probability that the process at constant temperature
visits the edge (i, j ) before the exit time of A (included) is of order

This renormalized cost in A will be expressed in

function of the cycle decomposition.
Both previous sections are in fact devoted to the combinatorial definitions

of the cycle decomposition and of the renormalized costs without any results
on their probabilistic meaning. We will state in Section 4, large deviation
estimates on exit time and exit point of subset of E which will enlighten
the probabilistic role of the quantities mentioned above. We will handle
large deviation estimates for arbitrary decreasing cooling schedules which
are the keys for the study of the convergence of the G.S.A.
As done for the sequential simulated annealing, the problem of

convergence can be written in the following way: Let A > 0 and denotes

Our first convergence result, established in Section 5, concerns the necessary
and sufficient condition on the cooling schedule T for which the mass in
Ex vanishes when the number of steps increases:

Let q be an irreducible Markov kernel on E and let 03BA E [1, +oo[. Let X
be a G.S.A. with parameter (q, x, P) and let T be the underlying cooling
schedule. Assume that T is decreasing (Tn > and vanishes when

n tends to infinity. Then for all A > 0, there exists rÀ > 0 (independent
of T) such that

The value of ra is explicitly given in function of the cycle decomposition by

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Finally, in Section 6, we study the optimal convergence speed and
we establish the following result which says that if q is an irreducible
Markov kernel on E, if ~ E ~l, +oo[ and if X is a G.S.A with

parameter (q, ~, P) whose underlying cooling schedule T is decreasing,
then, assuming that the underlying family Q E satisfies an

additional weak condition Ci (which is fulfilled for instance if 

~~ ~~ there exists b > 0 (which depends on Q
but not on T) such that for all level A > 0 and all n > 0,

with

where W(H) = infi~03A0 W(i).
We finally establish a last result which say we can construct for each

N a decreasing cooling schedule T N such that if PN = 1 then

there exists K1 > 0 such that B lt

where

This exponent is optimal for sufficiently small A > 0 since we have then
~xa = ax. As a corollary, we prove a conjecture of Azencott [1] ] on
the optimal convergence speed exponent for the convergence towards the
global minima of the virtual energy W. 

-

2. THE CYCLE DECOMPOSITION

Let q be an irreducible Markov kernel on E and let 03BA > 1. Let

Q = A(q, ~) and denotes V the underlying communication
cost. We present now the cycle decomposition of E which depends only
on V. The proof of the probabilistic properties of the cycles are postponed
to Section 4 where we will study exit time and exit point from a cycle.

Vol. 32, n° 3-1996.
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The cycle decomposition for a given communication cost has been
introduced by Wentzell and Freidlin [1] ] and we recall it briefly for

completeness. We need first to define the usual notion of path associated
with a cost function.

DEFINITION 2.1. - Let F be a finite set, C : F x be a function

(such a function will be called a communication cost function on F), and
i and j be two distinct configurations of F.

(1) We denote PthF( i, j) the set of all paths in F such that

go = i and gn = j . The path dependent integer n will be denoted n9 and
called the length of g.

(2) Let g in we defined C(g) by

We adopt the convention that C(g) = +0oo if one of the summation

terms is +0o.

The decomposition in cycles is defined in a recursive way. First the set
E° of the cycle of order 0 is defined by:

Let us consider the communication cost function Y° on E° defined by

Assume that the set E~ of the cycles of order k has been constructed as
well as a communication cost function Vk on EB The construction of the

pair can be split in several steps:
(1) From we define an other communication cost V~ on E~ by

II IT if either n = IT or there exists g E PthEk(03A0, n’)
such that = 0,

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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and the equivalence relation Rk by

(3) Define by

and define on the partial order by II2+1 if there exist

IIf c II:+1 for i = 1, 2 such that II2 -~ We note D:+1 the set of the
minimal elements of for the order ~.

(4) Define by

(5) We define now a communication cost on by

The construction continues until Ek = {E~. We denote nE the integer such
that {E~ and = {E}.

This procedure gives an hierarchical decomposition of the states space
on a tree beginning with the singletons and ending with the whole space.
One could find an helful example of this recursive construction in [16].
From this tree we will introduce the following subsets.

DEFINITION 2.2. - (1) We denote C(E) the set of all the cycles that is

. We define the maximal partition M (A) of A by:

Vol. 32, nO 3-1996.
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. We define the maximal proper partition .M*(A) of A by:

.M*(A) _ { II E C(E) n is a maximal element in 

We will now introduce in the following definition some important
parameters on the cycles.

DEFINITION 2.3. - Let n E C(E).
(1) We denote the real valued number

The real will be called the exit height of II. For 11 = {i} we will
often prefer the notation to H,. ( { i, } ).

(2) We denote the real number

The real will be mixing height of II.
(3) We denote W(II) the real valued number

(4) We denote F(II) the set

The set F(II) will be called the bottom of II.
Remark 5. - The probabilistic interpretation of He (II) and Hm(II) can

be easily given. For T > 0, let X be a G.S.A. with parameter (q, x, PT)
where the underlying cooling schedule T = is assuming to be
constant and equal to T (Tn = T, Vn e N). For each cycle II the exit time
from II is of order any starting point in II and the probability
to go from z E II to j E II within a time of order tends to 1
when the temperature T vanishes.
Some parts of the above definition can be extended to an arbitrary set.

DEFINITION 2.4. - Let 

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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(1) We define the exit height He(A) of A by

(2) We denote W(A) the real valued number

(3) We define the bottom F(A) of A by

DEFINITION 2.5. - Let i E E, we define by induction the increasing family
of cycles by iO == ~i~ and

Remark 6. - A set A which is not a cycle should be considered as an
inhomogeneous subset of E for the exit time from A. However, for any
starting point in A, a G.S.A with parameter (q, x, PT) (see remark 5) can
exit from A at least within a time of order eHe(A)/T.

We show in the next proposition proved in [15] the strong link that exists
between the virtual energy Wand the cycle decomposition.

PROPOSITION 2.6. - Let i E E. Then

3. RENORMALIZATION OF THE COMMUNICATION COST

In this section, we define from the communication cost V and an action
functional for the exit paths from a subset A of E. More precisely, starting
from a point i E A, we want to evaluate the probability that before the
exit time from A, the process (running at constant temperature T) visits the
edge (i, j). It appears that this probability is of order Hence

C A (i, j) can be interpreted as a new cost which weights the cost of a large
Vol. 32, n° 3-1996.
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deviation event (the visit of the edge (i, j)) from the standard behavior of
the process running in A. This cost will be called the renormalized cost
in A. This section is devoted to its combinatorial definition in function of
V and to preparatory lemmas for the large deviation estimates established
in Section 4.

DEFINITION 3.1. - (1) Let i, j E E, i ~ j . We denote by n2~ the integer
uniquely defined by :

(2) Let A C E, E. For all i E E we define ni,A by

PROPOSITION 3.2. - Let E. We define on E the function
CA by :

Then CA is a communication cost called the renormalized communication
cost in A.

Proof. - It is sufficient to prove that C A (i, j) > 0. Moreover, it is

sufficient to prove that for z we have :

This will be proved by induction on the value of nij.
Assume that nij = 0. Then (14) is equivalent to

which is obvious.

Now assume that the result has been proved for nij  I~ - 1. Then from
the recursive construction of the cycles and from the induction hypothesis
we have

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Furthermore, from the definition of V~ we have

Adding (15) and (16) we deduce (14) so that the proposition is proved. 0

DEFINITION 3.3. - Let A C E, and let i, j G E be two distinct

configurations. We denote by CA(i, j) the number

Here the infimum is taken on the paths from i to j that stay within A
except eventually at their extremities.

Remark 7. - Starting from the probabilistic interpretation of CA given in
the introduction of this section, we can easily deduce the interpretation of
CA(i, j ). For all i E A and j E E, if g E PthA (z, j ) is a path staying in A
(excepted eventually for its right hand extremity), the probability that the
process starting from i visits all the edges of g before exiting from A is
of order Hence, if j E A~, the probability that the process exit
from A at point j is of order 

We establish now four lemmas which will be useful for the next section.

LEMMA 3.4. - Let n E C(E) and ACE, A =/: E.
(1) Assume that 03A0 ~ E and let II’ E Enn be a cycle such that

Then there exist e E H and f E IT/ such that Cn (e, f) = 0.
(2) For all i, j E II, we have:

(3) For all i E A, let A~) = inf{ E A~ ~ . We have

Remark 8. - According to the probabilistic interpretation given in the
remark 7, (1) defines the arrows followed by the process when its goes out
of a particular cycle. For a cycle of level 0, that is for singleton {e}, these
arrows are defined by V(e, f) = Moreover, (2) says that starting
from i E II, the process visits all the configurations j E II before exiting

Vol. 32, n° 3-1996.
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with a probability non vanishing with the temperature. The interpretation
of (3) is straightforward.

Proof - Let us begin with part 1). From the recursive definition of the

cycle, there exist e E n and f E IT satisying:

We verify that

so that we get with (17) and (18) that Gn( e, f) = 0.
We prove now the part 2) of the lemma by induction on k = supi,j~03A0 nij.

Assume that k = 0, then nij = 0 and j E i 1. Furthermore, for all a, b E II,
a ~ b, nab = 0 we have

so that the result follows easily.
Assume now that the result is true If i k = j ~ then the induction

hypothesis gives C;k (i, j) = 0. Since we have C k (z, j ) > the

result is proved. Otherwise, it is sufficient to prove that if =

then Cn (I, j) = 0. However, using part 1 ) with II = we deduce

that there exist e and f such that Cn (e, f )  Cik(e, f) = 0.
The proof is completed if we notice that we get also from the induction
hypothesis that

We are now concerned by the proof of 3). We start by proving the result for
a cycle II e C(E) distinct of E. Since the point 2) is proved, it is sufficient
to prove that there exist e E II and f E IP such that Gn( e, f) = 0.
However, this has been proved in part 1). We consider now the general
case of a strict subset of E. Let i be an element of A, we prove the result

by induction on the value 
We assume here that ni,A == 0. From the definition of we deduce

that i 1 n A~ ~ ~ . Let j be in i 1 n A c. From the construction of the cycle
there exists a path g E such that:

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Hence, if ~ = inf{ 0 ~ ~ e ~ }, the path ~ stopped at r~
defined by  = verifies:

so that = 0 and the result is proved.
Assume now that the result is proved for all i in A such that ni,A  k.

Assume that ni,A = k. We note then II+ = From the definition of

ni,A, we have II+ n A~ ~ 0. Let j be in II+ n AC, we have from the point
1) that C*03A0+ (i, j ) = 0. Hence, we consider a path g E Pthn+ (i, j ) such that
Cn+ (i, j) = 0. As previously, we stop the path at its first exit from A, i.e.
we define 9 = where r~ = inf{ k  ] A~. Since for
all k ~ rg, 9k E n+, we have

Define 8g = ] = ni,A ~. For all l~  s9, we have
from (19) that ni,A = so that

and = 0. Now consider the two following cases. If s9 -~-1 = r9,
then the result is proved. Otherwise, applying the induction hypothesis, we
have CA (gs g + 1, A~ ) = 0 so that

The proof of the lemma is complete. D

Remark 9. - We can give an heuristic proof of the above equality with the
probabilistic interpretation of the renormalized costs. Consider the process
at equilibrium for a constant cooling schedule at temperature T. Now,

compute the order of the mass exiting from II at each time step. This mass
is given by the probability to be in II which is of order of (see
proposition 1.6) multiplied by the probability by unit of time to escape
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from II starting from II which is of order However, choosing a
point i E II, we can say that this mass is given by the probability to be at
i which is of order multiplied by the probability to escape from
II without any return to z which is of order Hence we get
W(II) + He(II) = + 

Proof - From the proposition 2.6 we know that there exists a constant
AE such that:

Assume that j E II, then

It is true that nj,n does not depend on j for j E II so that we will omit
the index j. Furthermore, since j nn = II, only the last term depends really
on j for j E II . Hence for f E we have

Hence to prove the lemma it is sufficient to prove that

Let j E II. Since = nij we have

However, for k > nij, we have jk = ik so that

Otherwise, if nji l > nij, then nil = nji . We deduce then that
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Hence for all paths g from i to IP through II we have

Moreover, there exists a path g from i to IP through II such that Cn (g) = 0
and nigk is increasing in k. Hence

We deduce from (20) and (21) that

so that the lemma is proved. D

LEMMA 3.6. - Let II E C (E), there exists a real valued constant An such
that for each II’ E we have

Remark 10. - The probabilistic interpretation of the above equality is

that at equilibrium at constant temperature T, the mass exiting from each
maximal proper sub-cycle II’ of il is of the same order.

Proof. - Let f E F ( II’ ) . We have

The result is proved if we notice that the last summation term does not

depend on II’ but on II. D

LEMMA 3.7. - Let (2, j ) E E x E, i 7~ ~ and consider a cycle
i E II. Then we have
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Remark 11.- Here again we can give a heuristic probabilistic proof of
the above equality if we consider the process at equilibrium at constant
temperature T. The probability to visit the edge (2, j ) is given by the
probability to be at i which is of order multiplied by the

probability of the transition from i to j which is of order 

However, considering the cycle II this probability can be compute in

another way. The probability is given by the probability to exit from II
which is of order multiplied by the probability to visit
the edge (2, j ) at the exit time which is of order ~Ze)~T . Hence we get

+ + W 2) + 

Proof - From the definition of Cn we get

If j ~ II, we have nij 2: n2,n and

The lemma is proved. D

4. THE LOCALIZATION THEOREMS

In Section 3, we have defined the main objects needed to perform a large
deviation study of a G.S.A. In this section, we turn to a rigorous setting of
the heuristic probabilistic interpretations of the cycle decomposition of E
and of the renormalized communication costs. One of our main tasks will

be to estimate the probability that starting from a point z E II, the Markov
chain escape from II at a point j E IT at a given time n. We will follow
the original approach of O. Catoni [2] who has handled large deviation
estimates for arbitrary decreasing cooling schedules.

Throughout this section, we will consider a fixed irreducible Markel

kernel q on E and a fixed ~ e 1, We denote X a G. S . A. with

parameter ( q, ~, P ) , ~ the underlying cooling schedule and V the

communication cost.
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4.1. Survival kernels

DEFINITION 4.1. - Let H > 0, a > 0 and b > 0 be three real valued
numbers. Now consider a kernel on the integers Q : Z x 7~-~ [0, 1] such that

The set of all such kernels is called the set of the right survival kernels
for (H, a, b) and denoted by DT (H, a, b). In the same way, we define the
set Dl (H, a, b) of the left survival kernels for (H, a, b) by

We will take the convention that the product ~l ,~+1 ( ) is 0 if one

of the term is negative.

Remark 12. - The survival kernels has been introduced in [2] and play
a central role in our large deviation estimates. The right kernel will be
used to give upper and lower bound to the probability that the Markov
chain starting in a subset A at time n exit from A at time n. They follows
approximately an inhomogeneous exponential law where the control is

done on the partial sums.

We recall now the stability lemmas given in [2].

LEMMA 4.2. (Stability under product). - Consider two real valued numbers
a > 0 and b > 0. Let Q E (respectively a, b)), let

R E 1)r(H,a,b) (respectively a, b)). Then, there exist a’ > 0 and
b’ > 0 which depend on a and b such that the product kernel QR is a
element of D’~(H, a’, b’) (respectively a’, b’)).
LEMMA 4.3. (Stability under convex combination). - Let Q E a, b)

(respectively a, b)), let R E (respectively 
and A E [0,1]. Then AQ+ (1- A)R E D’~ (H, a, b) (respectively a, b).

4.2. Localization kernels

Following Catoni, we define
DEFINITION 4.4. - (1) Let A C E. We define the stopping time T (A, m) by

(2) Let A c E, B C E. We define
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The kernel M(A, B) gives the probability to have an entrance at time n
into the set B at j, starting from i at time m and traveling in A during the
intermediate time. It will be used with B and will describe the way
that the Markov chain escape from A. On the other side, L(A, B) gives the
probability to be in j at time n, starting from z at time m and traveling in A.

4.3. Main large deviation estimates
THEOREM 4.5. - There exist a > 0, b > 0, c > 0, d > 0, Kl > 0, and

I~2 > 0 which depend only on E, q and  (and not on Y) such that for all
n E ~, the induction hypothesis ?-~C’~ ( a, b, c, d, Kl , K2 ) is true :

and all 2 E II:
there exists Q E A), a, b) such that

Moreover P(T(II,m) > n |Xm = i ) > 
~A~ n,alliEA,all j 

there exists Q E a, b) such that

Moreover we have

~3 ( a, b, K2 ) : For all II E C ( E), ~ I  n and all i E II :
there exists Q E a, b) such that

~C4 (a, b, K2 ) : For all A ~  n, all II E M(A) and all i E A:
there exists Q E a, b) such that

Remark 13. - This first theorem collects all the basic large deviation
estimates needed for the study of optimal cooling schedules. These estimates

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



321ROUGH LARGE DEVIATION ESTIMATES FOR THE OPTIMAL CONVERGENCE...

will be established by induction on the size of the considered subset starting
from obvious lower and upper bounds on the singletons. This is the approach
proposed by O. Catoni who establishes in [2] a similar theorem for the

sequential simulated annealing. We will follow the sketch of his proof.
However, introducing the renormalized communication cost, we will be
able to give large deviation estimates for the exit time of arbitrary subsets
and for generalized simulated annealing. This theorem shows that the large
deviation estimates can be obtained with uniform constants even in the time

inhomogeneous setting. The uniformity of the constants will be verified step
by step with the help of lemma 4.2 and lemma 4.3.

Remark 14. - Roughly speaking, the principle of the proof will be to
split the trajectories of the process into pieces for which we have large
deviations estimates. Combining all these estimates, we will get large
deviation estimates for the whole process.
We will give a meaningful example of this approach with the upper bound

of the exit flow of a cycle II given by H3. Since the process spends most
of its time in the configurations of lowest energies, we split the trajectory
into two pieces: the part of the trajectory before its last visit to a particular
point f in the bottom of II and the remaining part of the trajectory. Hence,
on one hand, we have to compute a bound for the probability to join j at a
given time n without escaping from II (this is done by the second part of
H2 taking A = II) and on the other hand, we have to study the probability
that the process starting from f E F(II) escapes from TI through a given
exit point j without return to f. This last part is given by with A = ~ f ~ .

For our induction, we will have to consider more general situations

leading to the quite complicated four statements of the theorem. These
statements have to be considered has the whole in the proof since they all
interact during the proof. However, only statements and H2 will be
used in our further results.

Proof. - Consider a = ,~ / ~, b = 0, I~1 = ~ / r~2 and K2 = r~2 / ~ where

Now consider (c, d) = (1, ~), we will prove that ?-~l (a, b, c, d, K1, ~2) is
true.

1i1 : Consider a cycle II = ~i~ and a subset A c II. Since we assume
that A is not empty, we have A = II so that II B A = 0. Then
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We consider now the exit time from II. A straightforward computation gives

with the convention that the product is 0 if it contains a negative term.
Hence the proof of Hi is complete. 

’

H2 : Consider A = {i~. Then we have

Since He(A), one easily proves that

Now, concerning the exit time from A, we have

so that the proof of H2 is complete.
7~3 : Consider a cycle n = ~i~. There exists ii E E such that

= V(i,il). Hence

and

Since He (i) = one easily verifies that

H4 : Consider a cycle n = ~z~. Then .~t(II) _ ~i~ and M(~i~, E) = 0
so that ~L4 is proved.
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The proof of H1 is now completed.
Assume that there exists -y = (a, b, c, d, Kl, K2) such that is

true. We will show that there exists q’ = ( a’ , b’ , c’ , d’ , Ki , K2 ) such that
~Cn (~y’ ) is true. Moreover, we should verify that ~y’ can be deduced from

~ by a function which depends only on E, q and ~. This verification will

be done explicitly in the proof of ~C 1 and will be left to the reader in
the remaining cases. Furthermore, we should notice that it is sufficient to

prove the weaker result:

There exist ( ai , bi ) 1  i  4 ~ such that

~n 1 (a’ 1~ b’ 1> c’ > d’ > K’ 1 ), ~Cn 2 (a’ 2~ b’ 2 ), ~Cn 3 (a’ 3~ b’ 3~ K’ ) 3 and ?-Cn 4 (a’ 4~ b’ 4~ K’ ) 4 are

true. Indeed, if we consider a = inf a’i, b = sup b’i, Ki = K2 and

K2 == K3, K4~, then b, c, d, Kl, K2) is true.
We begin now the proof of Hn.

?-~i : Let us consider the family of the element of 

Assume that i E IIo so that

where

Since > C’~(~j) we deduce from ~ ~(a,~, 0,~,~2) that

Concerning M2, we have the expansion

However, we deduce from ~--~ i -1 ( a, b, c, d, I~2 ) and from the lemma 4.2
that there exists which depends only on ( a, b, K2 ) and
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Q E A), al. bl) such that

Since (i, 21 ) + ~A j ) > (i, j) , and adding the family of
inequalities (23) for all the values of k and il, we deduce from lemma 4.3
that there exists (a2, b2, .K22~ ) which depends only on the size of E and
on such that

with Q E 
Concerning M3, let us consider the family of the elements

of A) such that U ilk,s, We have
O::;s::;rk

where

Since A ~ 0, we have AI  n - 1 so that we deduce from

?~ 1-1 ( a, b, c, d, K2 ), ~-C3 -1 ( a, b, K2 ) , ~-iC4 -1 ( a, b, K2 ) and from lemma 4.3
that there exists ( a3 , b3 , K3 ) ~ which depends only on ( a, b, K2 ) and on the
size of E such that

with Q E A), a3, b3 ) . However, we have for i 1 E ( A U IIo )
and i2 E A
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so that we deduce

Now, we deduce from (22), (24) and (27) that there exists (a4, b4, K4)
which depends only on (a, b, K2) and on the size of E such that

with Q E A), a4, b4). This ends the proof of the first inequality
of ?-~ i .
From now, we leave to the reader, the easy verifications which prove

that the parameters can always be chosen independently of V.
We are here concerned by the study of the exit time from II. Since we

can take d > 1, we will assume that Tn > 0 and > 0 (otherwise
the result is trivial). Let f E F(II), considering the last visit of f by the
Markov chain, we have the inequality

For a fixed n, consider the new cooling schedule defined by Tl
for l  n and l = Tn for l ~ n. For this new cooling schedule, we get
from ~-~C2 -1 (since we have assume Tn > 0 and He (II) > 0)

so that

Then, we deduce from the proof of the first inequality of that
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so that

The lemma 4.6 given below shows that the result follows from inequality
(29). Hence the proof of ~-l i is completed.

LEMMA 4.6. - Let ~y 1] and A C E. Assume that for all n > m,
all 2 E E we have

then, there exist c and d which depend only on 03B3 and K such that

Proof - This lemma has been established by O. Catoni in [2]. For

completeness, we report here the proof.
Assume first that  ~y/(4I~), then consider the family 

defined by .

However,

Hence, if c = 4I~/~y~, we have
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Now, for each n E I~ * , consider the integer k(n) such that  n 

We have

Assume now that > ~y/(4K). since we have c > (4K)~y,
we deduce (1 -  0 so that we have the result with the

convention that the product is zero if one of its term has a negative value.
The proof of the lemma is complete. D

~n (2) : Let g E PthE (i, j ) such that CA (g) = As in the proof
of ~-C i , we decompose the graph g into its exit points out of the elements
of .J~’I ( A ) . More precisely we consider the unique family (ik, nk, 
define by the following procedure : 

.

. io = go = i, no = 0, and IIo is the unique element of ./~l (A) such
that io E IIo .

. Let nk+l = inf{ l > and = 

- If = j then the construction is completed.
- Otherwise, define TIk+l in M(A) such that E 

Let r be the integer such that ir = j .

First case: Assume that A ~ C(E), then for all II E .J~t (A), all i’ E II
and all j’ E E we have

so that we deduce from the previous construction that
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Furthermore, we have

Since the cycles IIk verify ]  n, we deduce from ?-~C2 -1 and from the
stability lemmas that the right hand term is bounded from below by

with Q E al, bi). The result follows from inequality (31).
Second case: We assume now that A is a cycle II. The main difference

with the previous case is that the equality (30) is true only for j’ E II.
Hence the equation (31) must be changed in

Since one easily verifies that Cnr-l = 

He (II), we deduce in the same way that above :

with Q E a2~ ~2).
Define now for all H > 0, c > 0 and m ~ N

We define the sequence by:

For all n > m, we define k(n) E N by  n  We deduce

then from the construction of uk that
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From lemma 3.4, we deduce that Cn(i1,j) is independent of i ~ 6 n so
that we can defined C(TI,j) by:

Hence, we deduce from the previous inequality and from (33) that:

with Q E a, b). Since.we have here > 2, we get easily
that m) > m + 1 ~ ] = i ~ > 1 - ~ ou x = 1 - a~~. Hence
we deduce from ~C ~ that

and we get from (34)

Define now A~ by:

For proving ~ 2 , we have to prove that there exist a’, b’, K~ such that

We consider first the lower bound. We have
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Furthermore,

Since

and

we deduce from the definition of Un that

However,

so that we deduce from

that

with K = (In(2( 1 + b))/a + 1)~2. Coming back to inequality (36), we get
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Consider now uk+i + 1  h  ~A;+2. we have:

Indeed, for all 0  x  x, we have (1 - x) > so that

Therefore,

Hence, defining b’ = ( 1 / K’ ) - 1 and Ki = K’ / d, we have
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To establish the upper bound in (35), it is sufficient to consider for all

m G Z, the integer 7z(m) defined by ] Z~~=~ 
Ki ~ . Then, we consider A~ defined by A~ = A~ for n  and

if  we define A~ = Ki - ~ t ~ m~ 1 Am and 0 if

I~ > We can verify that

and 4A~ satisfies the inequalities (35). This ends the proof of the first

inequality of ~C2.
We prove now the last assertion of ~-C2. We do not any longer assume

that A is a cycle. Let i be in A, from lemma 3.4 we deduce that there

exists j E A~ so that = 0. Hence

The proof is completed as in [2] but we recall it for sake of completeness.
Consider the family defined by

From (37) we deduce that for 

However, assuming that a’  1/2, we have

Now, assuming

we deduce
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Hence, using the Markov property at time uk, we deduce

from which the proof of 7-lz is completed.
Let f E and consider the last visit of f by the Markov chain.

We can write

From Hn-11 we deduce that the first term of the inequality has the upper
bound

Now, considering the second term, we get from ?~2 and 

In the same way than in the proof of lemma 3.5 we easily show

that = Cn(f,j) and from lemma 3.4 we get
Cn (f, j) = Cn (i, j ) for any i E II so that the proof of follows
from (38) and (39).
The proof of is completed.
~~ : We can assume that A is not a cycle, otherwise the result is trivial.

We will show at first that there exist Q E a, b) and K > 0
such that

Let g E A and II9 E M(A) such that g E and = He(A).
Considering the last visit to g by the Markov chain, we get
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Furthermore, concerning the last term, we have the decomposition for
; E 03A0 ~ Ac

Now, consider the family of elements in M(A B ~g~) such that

where B9 = A~ if g ~ II and Bg = A~ u ~g~ otherwise. We have the
expansion

so that we obtain from ~-~C 1-1 and and lemma 3.5 that

Hence using again ~-ll-1, we deduce from (40) and (41) that

and then from ~C 2

we conclude finally that
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We can now prove ?-C4 . Let Ho E M (A) such that i E Ho. If j E IIo then
= 0 and the result has been proved above. Otherwise, considering

the last visit of the Markov chain in IIo, we get

where = 1 if i = j and m = n, otherwise its value is zero. Then if

where is the common value of for any ii E IIo,
we deduce that

Since one easily see that C > CAti, j ), the proof of ~l4 is completed. D
Consider the family of subsets of E, and the family 

of positive real valued numbers defined by the following procedure:

- if Fk = E then the procedure stops and r = k
- otherwise, we define = ~ II and

Fk+i = { i ] = where 03A0*i is the largest cycle II in
E such that i E F(n).
We can now establish the following theorem:

THEOREM 4.7. - For each 0  k  r, then there exist a > 0, b > 0 and
K > 0 which depends only on E, q, and 03BA (and not on Y), such that for
all i E F~, all j E Fk we have

with Q E a, b) .

Proof. - We first write the following expansion

Now define IIi as the largest cycle in E ~ ~ j ~ which contains i. We have
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with Q E al, However

so that

We should now study two cases.

First case: Assume that W(j) :S W (i), then j ~ IIi otherwise
j E and j E Fk. Hence IIz c IIi and W (IIZ ) + He(TIi) - W (i) >

+ W (2) _ 
Second case: Assume that W ( j ) > W (i), then let IIi be the smallest

cycle fl such that ~i, j ~ c n. We have IT; c IIi otherwise i E H*and W(j) > W(i) leads to a contradiction. Hence + 
+ so that

From both previous cases, we get

with Q E a2, b2 ) .
For proving the result, it is sufficient to show that there exist a’ > 0

and K’ > 0 such that

Noting a3 = inf ~ a, a2 ~, we get after an integration by parts
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~h t ~m~ Since (1 + 
we get

the result is proved. Hence, the proof of the theorem is completed. D

5. NECESSARY AND SUFFICIENT
CONDITION FOR CONVERGENCE

With this section, we start our study of the convergence properties of the
G.S.A. As mentioned in the introduction, our approach will be based on
the study on the probability to be in a level set of the virtual energy W.

DEFINITION 5.1. - Let A > 0. We denote Ex the subset of E defined by

We give now a necessary and sufficient condition on the decreasing
cooling schedule for which the mass in Ea vanishes when the number of
steps increases:

THEOREM 5.2. - Let q be an irreducible Markov kernel on E and let
r~ E ~l, Let X be a G.S.A. with parameter (q, ~, P) and let T be the
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underlying cooling schedule. Assume that T is decreasing (Tn > and

vanishes when n tends to infinity. Then for all 03BB > 0,

where

Proof. - The direct implication can be got from theorem 4.5. Let II be a
cycle included in Ex and such that He (II) = ra . Then, for all i E II

For the converse implication, we have to use the theorem 4.7. From the
definition of the subsets Fk, we get that there exits k E N for which
Ex c E B Fk et = Ta . Hence, denoting A = inf ~ W ( j ) - liE

E B Exand j E Ea }, we get the inequality:

with Q E a, b). Since is decreasing and converges to
0, there exists for all E > 0 an non negative integer M such that for all
m > M we have E/2. Therefore we have

However

Since Q E we get the upper bound
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so that there exists N E N such that for all n > N

The proof is completed. D

6. OPTIMAL CONVERGENCE SPEED EXPONENT

We study now by the optimal convergence rate of supiEE P( XN E
] Xo = i ) for any A > 0 (see definition 1.3). We will consider

triangular cooling schedules e.a. we free ourself from an unique cooling
schedule for all the finite horizon N and we allows us to define for

each finite horizon an adapted cooling schedule TN. We will established
successively an upper and a lower bound for this convergence speed.

6.1. Upper bound

In this part, we assume that the family (QT)T>O in A(q,) satisfies the
following additional condition:

01: There exists a set B of continuous real valued functions on [0, +oo[ [
such that

(1) For all f and g in B

. There exists A > 0 such that one of the two following inequalities
is true:

(2) For all i, j E E, i ~ j, if q(i, j) > 0, then there exist Ai~ > 0
and fij E B such that

This extra condition is essentially a condition of monotony in a

neighborhood of +0oo in ,C~ which is satisfied by all the standard sequential
or parallel annealing algorithms. For example, condition Ci holds if

Vol. 32, n° 3-1996.



340 A. TROUVÉ

where and are finite family of real
numbers such that ~ 0 for all ,~ > 0.

THEOREM 6.1. - Consider a family in A( q, ~) which satisfies
Cl. Let X be a G.S.A. with parameter (q, ~, P) where P = 
(see definition 1.3) and assume that the cooling schedule in decreasing
(Tn > Then there exists ~y > 0 independent of T and of the initial
distribution vo such that .

where ,uT is the unique invariant probability measure of QT.

Proof. - Let us recall first the well known explicit expression of the
invariant probability measure given by the Wentzell and Freidlin A-graphs
in [5]:

From now, we will use the variable ,~ = 1/T instead of T which seems
to be more appropriate for our proof. From Cl, we get for each u, v E E,
~c ~ v, a continuous function in B such that:

Hence, if we note fg = /uv, we get

Now, considering c+ = where f v and defining

f 9 = f 9 - c+, we have

where
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An obvious computation shows that 0 so that is decreasing in

/3 for each i E E. Finally, since h - f9~ for g E G({i}) and
g’ E G({i’~). We deduce from the stability under addition of the elements of
B that there exist io E E, go E G({io~) and /30 > 0 such that for all i E E
and all g E G({i}), the functions = f~(~) - satisfy

Hence, = where

The essential fact here is that the are decreasing in /3 and that

Now, assume that we have proved

then

However, since a,~ ( j ) is decreasing and > we get

Hence, one easily computes that

We can notice then that
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Since Z~ > ~y with q = A9° and

we get = (2) so that the theorem is
proved. D
The theorem above shows what can be expected from a decreasing

cooling schedule. Whatever the cooling schedule is, the probability for
X n to be in a configuration i is bounded from below by the invariant
probability measure at temperature Tn . We can now give an upper bound
for the convergence speed of G.S.A on level sets.

THEOREM 6.2. - Let q be an irreducible Markov kernel on E, let
K E and let X be a G.S.A with parameter (q, ~, P) whose
underlying cooling schedule T is decreasing. Then, assuming that the
underlying family Q E A( q, ~) satisfies the condition Cl, there exists b > 0
(which depends on Q but not on T) such that for all level ~ > 0 and all
n > 0,

with

Proof: - A very similar theorem has been proved in [2] for sequential
annealing and our proof borrows it crucial technical tricks from [2].
As noticed in [2] its is sufficient to prove that

for the Markov chain with the initial distribution measure vo ( j ) = 
for all j E E.
Now, consider IIÀ E C(E) such that W(II) - min W > A and

= ax. Then, considering the last visit to we have the
expansion
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From theorem 4.7 and Proposition 1.6 we get K > 0 independent of T
such that for all j E E

Hence,

Now, consider the cycle 03A0ij which is the smallest cycle in C(E)
containing {i, j~ and II, (respectively Hj) which is the largest cycle
in E B { j ~ (respectively E B ~i}) containing i (respectively containing
j ). We have Hz, II~ E so that we deduce from lemma 3.6

that + = + and from lemma 3.7 that

W(j) + Y(j, i) > + Hence

We should handle separately the case |03A003BB| ] = 1.
Assume that I = 1, then one proves easily by a direct computation

that there exist c. > 0, 0 G d  1 such that

so that we obtain from (42), (43), (44) and (45) that there exists Ki

(independent of A and T) such that

Assume now that I > 2, then denoting p = I q( i, j) >
0 and }, we have > m + 1 ~ I = z ) > 1 - x
where x = 1 - p /A. Hence, we deduce from Hi in theorem 4.5, that there
exist c, d and K > 0 such that
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which leads with (42), (43) and (44) to

The remaining of the proof is now exactly the same that the proof of
Theorem 5.2 in [2] and leads to the explicit computation of the lower
bound for P(X~ E through inequalities (46) and (47). However,
for completeness, we recall here the arguments. We consider only the case

21. The case I = 1 can be handled similarly and is left to
the reader.

Consider the sequence defined by

where we have noted W(IIa) = W(IIa) - minW.
Denoting b = a straightforward computation gives that

for

Hence consider

and

We will prove by induction that for all decreasing T = the

sequence defined by (48) and Ro = So verifies Rn > Sn for
all n E N.
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Assume that Sk, then from (48) we get

Since Sk  So  1(1 + 6-1)KZ~d, we deduce from (49) and
(51) that

Hence P(X~ E IIx) 2: Sn for all n E N.
It is sufficient now to compute a lower bound for the sequence 

From (50) we deduce that

However,

Hence

Denoting

we get ,S’n s  na so that ,S’r,, > 
1 

with b = a-s 1. The proof of
theorem 6.2 is completed. D

Vol. 32, n° 3-1996.



346 A. TROUVÉ

6.2. Lower bound

Theorem 6.1 shows that there exist a constant K such that for all 

and all decreasing cooling schedules, we have

To establish a lower bound, it is natural to look for cooling schedule such
that

Theorem 4.7 is the key of the inequality (52). As we have previously
noticed, the statement of this theorem is exactly the same in the sequential
case than in the generalized case except that we have to replace the virtual
energy U by the virtual energy ~. Moreover, it is the unique source of
all the lower bound estimates for the convergence speed of the sequential
simulated annealing algorithms. Hence, the extension the the general case
of the theorem on the lower bound of the convergence speed does not
demand any specific modification compared to its statement in [2] for the
sequential case neither for its proof. It is sufficient to use strictly the same
arguments and to exchange U and T~.

THEOREM 6.3. - Let q be an irreducible Markov kernel on E, let

03BA E [1, -f-oo[ and let Q E A(q, 03BA). Let 03BB > 0. There exists a non negative
constant K such that for all N E i~~, there exists a decreasing cooling
schedule ~N = for which if X is a G. S.A with parameter (q, ~, PN )
where PN = ~N, vo) then

where

Remark 15. - One obviously have cxa = aa for sufficiently small A.

Proof. - It is sufficient to consider the proof of the theorem 7.1 in [2]
and to replace U by W. D
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7. CONCLUSION

In this paper, we have emphasized the study of the value of the optimal
convergence speed exponent for level sets. Our approach gives a semi
explicit expression of the exponents in function of the communication

cost V. However, in practical situation, their numeric computations are
hard combinatorial problems but an implementable recursive algorithm has
been proposed by the author in [15] and [16] useful to test conjecture on
small state spaces. Moreover, an easier problem is the comparison of the
exponents for different annealing algorithms and this approach succeeds
for instance in the study of parallel algorithms based on several interacting
annealing processes as done in [14]. Concerning the synchronous parallel
version of the sequential annealing for image processing presented in

the introduction, the problem is a bit more delicate and it appear that

generally the configurations minimizing the virtual energy do not minimize
the underlying cost U (one can propose more efficient parallel schemes,;
see [15] for an extensive study).
One limitation of this approach is in the evaluation of the multiplicative

constants appearing in the upper and lower bounds for the convergence
speed. An alternative approach seems to be the computation of geometric
bounds of the spectral gap of the transition kernel based on the Poincaré
method. This method, used in the continuous-time setting, gives the optimal
constant for the logarithmic cooling schedules ([7], [4], [11]). However, this
approach does not make appear the optimal exponent aopt , in particular
because one needs to get estimates uniform in a large set of cooling
schedules.
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