Rough large deviation estimates for the optimal convergence speed exponent of generalized simulated annealing algorithms
Annales de l'I.H.P. Probabilités et statistiques, Volume 32 (1996) no. 3, p. 299-348
@article{AIHPB_1996__32_3_299_0,
     author = {Trouv\'e, Alain},
     title = {Rough large deviation estimates for the optimal convergence speed exponent of generalized simulated annealing algorithms},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     publisher = {Gauthier-Villars},
     volume = {32},
     number = {3},
     year = {1996},
     pages = {299-348},
     zbl = {0853.60029},
     mrnumber = {1387393},
     language = {en},
     url = {http://www.numdam.org/item/AIHPB_1996__32_3_299_0}
}
Trouvé, Alain. Rough large deviation estimates for the optimal convergence speed exponent of generalized simulated annealing algorithms. Annales de l'I.H.P. Probabilités et statistiques, Volume 32 (1996) no. 3, pp. 299-348. http://www.numdam.org/item/AIHPB_1996__32_3_299_0/

[1] R. Azencott, A common large deviation framework for sequential and parallel annealing. In R. Azencott et al., editors, Simulated annealing: Parallelization techniques, chapter 2, Willey and Sons, 1992, pp. 11-23. | MR 1188932 | Zbl 0787.90072

[2] O. Catoni, Rough large deviation estimates for simulated annealing. Application to exponential schedules, Ann. Probab., Vol. 20, 1992, pp. 1109-1146. | MR 1175253 | Zbl 0755.60021

[3] T.-S. Chiang and Y. Chow, A limit theorem for a class of inhomogeneous markov processes, Ann. Probab., 1989. | MR 1048941 | Zbl 0687.60070

[4] J.-D. Deuschel and C. Mazza, L2 convergence of time non-homogeneous markov processes: I. spectral estimates, Université de Fribourg, Institut de Mathématiques, preprint (to appear in the Ann. of Appl. Prob.), 1992. | MR 1304771 | Zbl 0819.60063

[5] M.I. Freidlin and A.D. Wentzell, Random Pertubations of Dynamical Systems, Vol. 260, Springer-Verlag, 1984. | MR 722136 | Zbl 0522.60055

[6] D. Geman, Random fields and inverse problem in imaging. In École d'Été de probabilités de Saint-Flour XVIII, Springer-Verlag, 1990. | MR 1100283 | Zbl 0718.60119

[7] F. Götze, Rate of convergence of simulated annealing processes, Preprint, 1992.

[8] B. Hajek, Cooling schedule for optimal annealing, Math. Oper. Res., Vol. 13, 1988, pp. 311-329. | MR 942621 | Zbl 0652.65050

[9] R. Holley and D. Strook, Annealing via sobolev inequalities, Comm. Math. Phys., Vol. 115, 1988, pp. 553-559. | MR 933455 | Zbl 0643.60092

[10] C.-R. Hwang and S.-J. Sheu, Singular perturbed markov chains and exact behaviors of simulated annealing process, J. Theoret. Probab., Vol. 5(2), 1992, pp. 223-249. | MR 1157983 | Zbl 0755.60047

[11] S. Ingrassia, On the rate of convergence of the metropolis algorithm and gibbs sampler by geometric bounds, to appear in Annals of Applied Probability, 1993. | MR 1272731 | Zbl 0802.60061

[12] S. Kirkpatrick, C. Gelatt and M. Vecchi, Optimization by simulated annealing, Sciense, Vol. 220, 1983, pp. 671-680. | MR 702485

[13] L. Miclo, Recuit simulé sans potentiel sur un ensemble fini, Séminaire de Probabilités, Vol. 26, 1992. | Numdam | MR 1231982 | Zbl 0770.60090

[14] A. Trouvé, , Asymptotical behavior of several interacting annealing processes, Preprint, 1993. | MR 1351714

[15] A. Trouvé, Parallélisation massive du recuit simulé, PhD thesis, Université d'Orsay, Jan. 1993.

[16] A. Trouvé, Cycle decompositions and simulated annealing, Rapport de recherche du LMENS, to appear in SIAM J. Control Opt., 1996. | MR 1384962 | Zbl 0852.60031