A note on parabolic convexity and heat conduction
Annales de l'I.H.P. Probabilités et statistiques, Volume 32 (1996) no. 3, pp. 387-393.
@article{AIHPB_1996__32_3_387_0,
     author = {Borell, Christer},
     title = {A note on parabolic convexity and heat conduction},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     pages = {387--393},
     publisher = {Gauthier-Villars},
     volume = {32},
     number = {3},
     year = {1996},
     mrnumber = {1387396},
     zbl = {0854.60058},
     language = {en},
     url = {http://archive.numdam.org/item/AIHPB_1996__32_3_387_0/}
}
TY  - JOUR
AU  - Borell, Christer
TI  - A note on parabolic convexity and heat conduction
JO  - Annales de l'I.H.P. Probabilités et statistiques
PY  - 1996
SP  - 387
EP  - 393
VL  - 32
IS  - 3
PB  - Gauthier-Villars
UR  - http://archive.numdam.org/item/AIHPB_1996__32_3_387_0/
LA  - en
ID  - AIHPB_1996__32_3_387_0
ER  - 
%0 Journal Article
%A Borell, Christer
%T A note on parabolic convexity and heat conduction
%J Annales de l'I.H.P. Probabilités et statistiques
%D 1996
%P 387-393
%V 32
%N 3
%I Gauthier-Villars
%U http://archive.numdam.org/item/AIHPB_1996__32_3_387_0/
%G en
%F AIHPB_1996__32_3_387_0
Borell, Christer. A note on parabolic convexity and heat conduction. Annales de l'I.H.P. Probabilités et statistiques, Volume 32 (1996) no. 3, pp. 387-393. http://archive.numdam.org/item/AIHPB_1996__32_3_387_0/

[1] H. Bauer, Heat balls and Fulks measures. Ann. Acad. Sci. Fennicae Ser. A. I. Math., Vol. 10, 1985, pp. 67-82. | MR | Zbl

[2] C. Borell, Undersökning av paraboliska mått. Preprint series No. 16, Aarhus Univ. 1974/75. | MR

[3] C. Borell, Geometric properties of some familiar diffusions in Rn. Ann. Probability, Vol. 21, 1993, pp. 482-489. | MR | Zbl

[4] C. Borell, Greenian potentials and concavity. Math. Ann., 1985, pp. 155-160 . | MR | Zbl

[5] H.J. Brascamp and E.H. Lieb, In Functional integration and its applications, edited by A. M. Arthurs, Clarendon Press, Oxford 1975. | MR

[6] H.J. Brascamp and E.H. Lieb, On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation. J. Funct. Anal., Vol. 22, 1976, pp. 366-389. | MR | Zbl

[7] J.L. Doob, Classical potential theory and its probabilistic counterpart, Springer-Verlag, New York, 1984. | MR | Zbl

[8] A. Ehrhard, Symétrisation dans l'espace de Gauss. Math. Scand., Vol. 53, 1983, pp. 281-301. | MR | Zbl

[9] R.M. Gabriel, A result concerning convex level surfaces of 3-dimensional harmonic functions. J. London Math. Soc., Vol. 32, 1957, pp. 286-294. | MR | Zbl

[10] L. Hörmander, Notions of convexity, Birkhäuser, Boston, 1994. | MR | Zbl

[11] B. Kawohl, When are superharmonic functions concave? Applications to the St. Venant torsion problem and to the fundamental mode of the clamped membrane. Z. Angew. Math. Mech., Vol. 64, 1984, pp. 364-366. | MR | Zbl

[12] N.A. Watson, Green functions, potentials, and the Dirichlet problem for the heat equation. Proc. London Math. Soc., Vol. 33, 1976, pp. 251-298. | MR | Zbl

[13] N.A. Watson, Mean values of subtemperatures over level surfaces of Green functions. Ark. Mat., Vol. 30, 1992, pp. 165-185. | MR | Zbl