@article{AIHPB_1996__32_3_387_0, author = {Borell, Christer}, title = {A note on parabolic convexity and heat conduction}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {387--393}, publisher = {Gauthier-Villars}, volume = {32}, number = {3}, year = {1996}, mrnumber = {1387396}, zbl = {0854.60058}, language = {en}, url = {http://archive.numdam.org/item/AIHPB_1996__32_3_387_0/} }
TY - JOUR AU - Borell, Christer TI - A note on parabolic convexity and heat conduction JO - Annales de l'I.H.P. Probabilités et statistiques PY - 1996 SP - 387 EP - 393 VL - 32 IS - 3 PB - Gauthier-Villars UR - http://archive.numdam.org/item/AIHPB_1996__32_3_387_0/ LA - en ID - AIHPB_1996__32_3_387_0 ER -
Borell, Christer. A note on parabolic convexity and heat conduction. Annales de l'I.H.P. Probabilités et statistiques, Volume 32 (1996) no. 3, pp. 387-393. http://archive.numdam.org/item/AIHPB_1996__32_3_387_0/
[1] Heat balls and Fulks measures. Ann. Acad. Sci. Fennicae Ser. A. I. Math., Vol. 10, 1985, pp. 67-82. | MR | Zbl
,[2] Undersökning av paraboliska mått. Preprint series No. 16, Aarhus Univ. 1974/75. | MR
,[3] Geometric properties of some familiar diffusions in Rn. Ann. Probability, Vol. 21, 1993, pp. 482-489. | MR | Zbl
,[4] Greenian potentials and concavity. Math. Ann., 1985, pp. 155-160 . | MR | Zbl
,[5] In Functional integration and its applications, edited by A. M. Arthurs, Clarendon Press, Oxford 1975. | MR
and ,[6] On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation. J. Funct. Anal., Vol. 22, 1976, pp. 366-389. | MR | Zbl
and ,[7] Classical potential theory and its probabilistic counterpart, Springer-Verlag, New York, 1984. | MR | Zbl
,[8] Symétrisation dans l'espace de Gauss. Math. Scand., Vol. 53, 1983, pp. 281-301. | MR | Zbl
,[9] A result concerning convex level surfaces of 3-dimensional harmonic functions. J. London Math. Soc., Vol. 32, 1957, pp. 286-294. | MR | Zbl
,[10] Notions of convexity, Birkhäuser, Boston, 1994. | MR | Zbl
,[11] When are superharmonic functions concave? Applications to the St. Venant torsion problem and to the fundamental mode of the clamped membrane. Z. Angew. Math. Mech., Vol. 64, 1984, pp. 364-366. | MR | Zbl
,[12] Green functions, potentials, and the Dirichlet problem for the heat equation. Proc. London Math. Soc., Vol. 33, 1976, pp. 251-298. | MR | Zbl
,[13] Mean values of subtemperatures over level surfaces of Green functions. Ark. Mat., Vol. 30, 1992, pp. 165-185. | MR | Zbl
,