Laws of the iterated logarithm for intersections of random walks on Z4
Annales de l'I.H.P. Probabilités et statistiques, Volume 33 (1997) no. 1, p. 37-63
@article{AIHPB_1997__33_1_37_0,
     author = {Marcus, Michael B. and Rosen, Jay},
     title = {Laws of the iterated logarithm for intersections of random walks on Z4},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     publisher = {Gauthier-Villars},
     volume = {33},
     number = {1},
     year = {1997},
     pages = {37-63},
     zbl = {0870.60065},
     mrnumber = {1440255},
     language = {en},
     url = {http://www.numdam.org/item/AIHPB_1997__33_1_37_0}
}
Marcus, Michael B.; Rosen, Jay. Laws of the iterated logarithm for intersections of random walks on Z4. Annales de l'I.H.P. Probabilités et statistiques, Volume 33 (1997) no. 1, pp. 37-63. http://www.numdam.org/item/AIHPB_1997__33_1_37_0/

[1] L. Breiman, Probability, Society for Industrial and Applied Mathematics, Philadelphia, 1992. | MR 1163370 | Zbl 0753.60001

[2] J.-F. Le Gall, Propriétés d'intersection des marches aléatoires, II, Comm. Math. Phys., Vol. 104, 1986, pp. 509-528. | MR 840749 | Zbl 0609.60079

[3] J.-F. Le Gall and J. Rosen, The range of stable random walks, Ann. Probab., Vol. 19, 1991, pp. 650-705. | MR 1106281 | Zbl 0729.60066

[4] G. Lawler, A note on the Green's function for random walk in four dimensions, Duke Math. Department, preprint.

[5] M. Marcus and J. Rosen, Laws of the iterated logarithm for the local times of recurrent random walks on Z2 and of Lévy processes and recurrent random walks in the domain of attraction of Cauchy random variables, Ann. Inst. H. Poincaré Prob. Stat., Vol. 30, 1994, pp. 467-499. | Numdam | MR 1288360 | Zbl 0805.60069

[6] M. Marcus and J. Rosen, Laws of the iterated logarithm for the local times of symmetric Levy processes and recurrent random walks, Ann. Probab., Vol. 22, 1994, pp. 626-658. | MR 1288125 | Zbl 0815.60073

[7] F. Spitzer, Principles of random walk, Springer Verlag, New York, 1976. | MR 388547 | Zbl 0359.60003