@article{AIHPB_1997__33_2_167_0, author = {Bertoin, J. and Doney, R. A.}, title = {Spitzer's condition for random walks and {L\'evy} processes}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {167--178}, publisher = {Gauthier-Villars}, volume = {33}, number = {2}, year = {1997}, mrnumber = {1443955}, zbl = {0880.60078}, language = {en}, url = {http://archive.numdam.org/item/AIHPB_1997__33_2_167_0/} }
TY - JOUR AU - Bertoin, J. AU - Doney, R. A. TI - Spitzer's condition for random walks and Lévy processes JO - Annales de l'I.H.P. Probabilités et statistiques PY - 1997 SP - 167 EP - 178 VL - 33 IS - 2 PB - Gauthier-Villars UR - http://archive.numdam.org/item/AIHPB_1997__33_2_167_0/ LA - en ID - AIHPB_1997__33_2_167_0 ER -
%0 Journal Article %A Bertoin, J. %A Doney, R. A. %T Spitzer's condition for random walks and Lévy processes %J Annales de l'I.H.P. Probabilités et statistiques %D 1997 %P 167-178 %V 33 %N 2 %I Gauthier-Villars %U http://archive.numdam.org/item/AIHPB_1997__33_2_167_0/ %G en %F AIHPB_1997__33_2_167_0
Bertoin, J.; Doney, R. A. Spitzer's condition for random walks and Lévy processes. Annales de l'I.H.P. Probabilités et statistiques, Volume 33 (1997) no. 2, pp. 167-178. http://archive.numdam.org/item/AIHPB_1997__33_2_167_0/
[1] Lévy Processes, Cambridge University Press, 1996. | MR | Zbl
,[2] Some independence results related to the arc-sine law, J. Theoretic. Prob., Vol. 9, 1996, pp. 447-458. | MR | Zbl
, and ,[3] Regular Variation, Cambridge University Press, Cambridge, 1987. | MR | Zbl
, , and ,[4] Spitzer's condition and ladder variables in random walk, Probab. Theory Relat. Fields, Vol. 101, 1995, pp. 577-580. | MR | Zbl
,[5] An Introduction to Probability Theory and its Applications, Vol. 2, 2nd edn. Wiley, New York, 1971.
,[6] Sample functions of processes with stationary and independent increments. In: Advances in Probability, Vol. 3, 1974, pp. 241-296. | MR | Zbl
:[7] On the arc-sine laws for Lévy processes, J. Appl. Prob., Vol. 31, 1994, pp. 76-89. | MR | Zbl
, and ,[8] A combinatorial lemma and its application to probability theory. Trans. Amer. Math. Soc., Vol. 82, 1956, pp. 323-339. | MR | Zbl
,[9] Principles of Random Walk, Van Nostrand, Princeton, 1964. | MR | Zbl
,[10] A local limit theorem for non-lattice multi-dimensional distribution functions, Ann. Math. Stat., Vol. 36, 1965, pp. 546-551. | MR | Zbl
,