@article{AIHPB_1997__33_5_531_0, author = {Barlow, M. T. and Hambly, B. M.}, title = {Transition density estimates for brownian motion on scale irregular {Sierpinski} gaskets}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {531--557}, publisher = {Gauthier-Villars}, volume = {33}, number = {5}, year = {1997}, mrnumber = {1473565}, zbl = {0903.60072}, language = {en}, url = {http://archive.numdam.org/item/AIHPB_1997__33_5_531_0/} }
TY - JOUR AU - Barlow, M. T. AU - Hambly, B. M. TI - Transition density estimates for brownian motion on scale irregular Sierpinski gaskets JO - Annales de l'I.H.P. Probabilités et statistiques PY - 1997 SP - 531 EP - 557 VL - 33 IS - 5 PB - Gauthier-Villars UR - http://archive.numdam.org/item/AIHPB_1997__33_5_531_0/ LA - en ID - AIHPB_1997__33_5_531_0 ER -
%0 Journal Article %A Barlow, M. T. %A Hambly, B. M. %T Transition density estimates for brownian motion on scale irregular Sierpinski gaskets %J Annales de l'I.H.P. Probabilités et statistiques %D 1997 %P 531-557 %V 33 %N 5 %I Gauthier-Villars %U http://archive.numdam.org/item/AIHPB_1997__33_5_531_0/ %G en %F AIHPB_1997__33_5_531_0
Barlow, M. T.; Hambly, B. M. Transition density estimates for brownian motion on scale irregular Sierpinski gaskets. Annales de l'I.H.P. Probabilités et statistiques, Volume 33 (1997) no. 5, pp. 531-557. http://archive.numdam.org/item/AIHPB_1997__33_5_531_0/
[1] Random walks, electrical resistance, and nested fractals, In: K. D. Elworthy, N. Ikeda (eds.) Asymptotic problems in probability theory: stochastic models and diffusion on fractals, Montreal, Pitman, 1993, pp. 131-157. | MR | Zbl
,[2] Construction of Brownian motion on the Sierpinski carpet, Ann. Inst. H. Poincaré, Vol. 25, 1989, pp. 225-257. | Numdam | MR | Zbl
and ,[3] Transition densities for Brownian motion on the Sierpinski carpet, Prob. Theory Rel. Fields, Vol. 91, 1992, pp. 307-330. | MR | Zbl
and ,[4] Brownian motion on the Sierpinski gasket, Probab. Theory Rel. Fields, Vol. 79, 1988, pp. 543-624. | MR | Zbl
and ,[5] Espaces de Dirichlet I, le cas élémentaire, Acta. Math., Vol. 99, 1958, pp. 203-224. | MR | Zbl
and ,[6] Fractal Geometry, Wiley, Chichester, 1990. | MR | Zbl
,[7] Transition density estimates for Brownain motion on affine nested fractals, Comm. Math. Phys., Vol. 165, 1994, pp. 595-620. | MR | Zbl
, and ,[8] Dirichlet forms, diffusion processes and spectral dimensions for nested fractals, In: Albeverio, Fenstad, Holden and Lindstrøm (eds.) Ideas and Methods in Mathematical Analysis, Stochastics, and Applications, In Memory of R. Høegh-Krohn, vol. 1, Cambridge Univ. Press, 1992, pp. 151-161. | MR | Zbl
,[9] Dirichlet forms and symmetric Markov processes, de Gruyter, Berlin, 1994. | MR | Zbl
, and ,[10] Brownian motion on a homogeneous random fractal, Probab. Theory Rel. Fields, Vol. 94, 1992, pp. 1-38. | MR | Zbl
,[11] Brownian motion on a random recursive Sierpinski gasket, to appear Ann. Probab., 1997. | MR | Zbl
,[12] Self-similar sets, Indiana Univ. Math. J., Vol. 30, 1981, pp. 713-747. | Zbl
,[13] A harmonic calculus for p.c.f. self-similar sets, Trans. Am. Math. Soc., Vol. 335, 1993, pp. 721-755. | MR | Zbl
,[14] Harmonic calculus on limits of networks and its applications to dendrites, J. Funct. Anal., Vol. 128, 1995, pp. 48-86. | MR | Zbl
,[15] Estimates of transition densities for Brownian motion on nested fractals, Proba. Theory Rel. Fields, Vol. 96, 1993, pp. 205-224. | MR | Zbl
,[16] Diffusion processes on nested fractals, In: Dobrushin, R. L., Kusuoka, S.: Statistical mechanics and fractals (Lect. Notes in Math. 1569), Springer-Verlag, 1993.
,[17] Dirichlet forms on fractals: Poincaré constant and resistance, Probab. Theory Relat. Fields, Vol. 93, 1992, pp. 169-196. | MR | Zbl
and ,[18] Brownian motion on nested fractals, Memoirs Am. Math. Soc., Vol. 420, 1990. | MR | Zbl
,[19] Random recursive constructions: asymptotic geometric and topological properties, Trans. Am. Math. Soc., Vol. 295, 1990, pp. 325-346. | MR | Zbl
and ,