@article{AIHPB_1997__33_5_651_0, author = {Pruss, Alexander R.}, title = {Comparisons between tail probabilities of sums of independent symmetric random variables}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {651--671}, publisher = {Gauthier-Villars}, volume = {33}, number = {5}, year = {1997}, mrnumber = {1473569}, zbl = {0893.60009}, language = {en}, url = {http://archive.numdam.org/item/AIHPB_1997__33_5_651_0/} }
TY - JOUR AU - Pruss, Alexander R. TI - Comparisons between tail probabilities of sums of independent symmetric random variables JO - Annales de l'I.H.P. Probabilités et statistiques PY - 1997 SP - 651 EP - 671 VL - 33 IS - 5 PB - Gauthier-Villars UR - http://archive.numdam.org/item/AIHPB_1997__33_5_651_0/ LA - en ID - AIHPB_1997__33_5_651_0 ER -
%0 Journal Article %A Pruss, Alexander R. %T Comparisons between tail probabilities of sums of independent symmetric random variables %J Annales de l'I.H.P. Probabilités et statistiques %D 1997 %P 651-671 %V 33 %N 5 %I Gauthier-Villars %U http://archive.numdam.org/item/AIHPB_1997__33_5_651_0/ %G en %F AIHPB_1997__33_5_651_0
Pruss, Alexander R. Comparisons between tail probabilities of sums of independent symmetric random variables. Annales de l'I.H.P. Probabilités et statistiques, Tome 33 (1997) no. 5, pp. 651-671. http://archive.numdam.org/item/AIHPB_1997__33_5_651_0/
[1] On estimates of the remainder term in the central limit theorem, Litovskiĭ Mat. Sb., Vol. 6, 1966, p. 323-346 (Russian). | MR | Zbl
[= BIKYALIS],[2] Explorations in martingale theory and its applications, Ecole d'Eté de Probabilités de Saint-Flour XIX - 1989 (D. L. Burkholder, E. Padoux and A. Sznitman, eds.), Lecture Notes in Mathematics, Vol. 1464, Springer-Verlag, New York, 1991, p. 1-66. | MR | Zbl
,[3] A remark on the tail probability of a distribution, J. Multivariate Analysis, Vol. 8, 1978, p. 328-333. | MR | Zbl
,[4] On a theorem of Hsu and Robbins, Ann. Math. Statist., Vol. 20, 1949, p. 286-291. | MR | Zbl
,[5] Remark on my paper "On a theorem of Hsu and Robbins", Ann. Math. Statist., Vol. 21, 1950, p. 138. | MR | Zbl
,[6] Limit Distributions for Sums of Independent Random Variables, revised, Addison-Wesley, Reading, Massachusetts, 1968. | MR
and ,[7] Complete convergence, Asymptotic Statistics: Proceedings of the Fifth Symposium held at Charles University, Prague, September 4-9, 1993 (P. Mandl and M. Hušková, eds.), Contrib. Statist., Physica-Verlag, Heidelberg. | MR
,[8] Complete convergence for arrays, Periodica Math. Hungarica, Vol. 25, 1992, p. 51-75. | MR | Zbl
,[9] A supplement to the strong law of large numbers, J. Appl. Prob., Vol. 12, 1975, p. 173-175. | MR | Zbl
,[10] Complete convergence and the law of large numbers, Proc. Nat. Acad. Sci. U.S.A., Vol. 33, 1947, p. 25-31. | MR | Zbl
and ,[11] Evaluating Lebesgue integrals as limits of Riemann sums, Math. Japonica, Vol. 38, 1993, p. 1073-1076. | MR | Zbl
,[12] Convergence of series of probabilities of large deviations of sums of independent identically distributed random variables, Ukraïnskiĭ Mat. Zhurn., Vol. 45, 1993, p. 770-784. | MR | Zbl
,[13] Random Series and Stochastic Integrals: Single and Multiple, Birkhauser, Boston, 1992. | MR | Zbl
and ,[14] Convergence and almost sure convergence of weighted sums of random variables, J. Theoret. Probab., Vol. 8, 1995, p. 49-76. | MR | Zbl
, , and ,[15] Probability Theory, 3rd edition, Van Nostrand, New York, 1963. | MR | Zbl
,[16] Comparison of sums of identically distributed random vectors, Probab. Math. Statist., Vol. 14, 1993, p. 281-285. | MR | Zbl
,[17] On Spătaru's extension of the Hsu-Robbins-Erdös law of large numbers, J. Math. Anal. Appl., Vol. 199, 1996, p. 558-578. | MR | Zbl
,[18] Randomly sampled Riemann sums and complete convergence in the law of large numbers for a case without identical distribution, Proc. Amer. Math. Soc., Vol. 124, 1996, p. 919-929. | MR | Zbl
,[19] A two-sided estimate in the Hsu-Robbins-Erdös law of large numbers, Stochastic Processes Appl. (to appear). | MR | Zbl
,[20] Remarks on summability of series formed from deviation probabilities of sums of independent identically distributed random variables, Ukraïnskiĭ Mat. Zhurn., Vol. 48, 1996, p. 569-572. | MR | Zbl
,[21] A bounded N-tuplewise independent and identically distributed counterexample to the CLT, Preprint, 1997.
,[22] On complete convergence for some classes of dependent random variables, Annales Univ. Mariae Curie-Sklodowska, (Sectio A), Vol. 47, 1993, p. 145-150. | MR | Zbl
,[23] Coupling methods in probability theory, Scand. J. Statist., Vol. 22, 1995, p. 159-182. | MR | Zbl
,[24] Tail probabilities of sums of random vectors in Banach spaces, and related norms, Measure Theory Oberwolfach 1979 (D. Kolzow, ed.), Lecture Notes in Mathematics, Vol. 794, Springer-Verlag, New York, 1980, p. 455-469. | MR | Zbl
,[25] On Marcinkiewicz-Zygmund laws of large numbers in Banach spaces and related rates of convergence, Probab. Math. Statist., Vol. 1, 1980, p. 117-131. | MR | Zbl
,