@article{AIHPB_1997__33_6_797_0, author = {Furman, Alex}, title = {On the multiplicative ergodic theorem for uniquely ergodic systems}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {797--815}, publisher = {Gauthier-Villars}, volume = {33}, number = {6}, year = {1997}, mrnumber = {1484541}, zbl = {0892.60011}, language = {en}, url = {http://archive.numdam.org/item/AIHPB_1997__33_6_797_0/} }
TY - JOUR AU - Furman, Alex TI - On the multiplicative ergodic theorem for uniquely ergodic systems JO - Annales de l'I.H.P. Probabilités et statistiques PY - 1997 SP - 797 EP - 815 VL - 33 IS - 6 PB - Gauthier-Villars UR - http://archive.numdam.org/item/AIHPB_1997__33_6_797_0/ LA - en ID - AIHPB_1997__33_6_797_0 ER -
Furman, Alex. On the multiplicative ergodic theorem for uniquely ergodic systems. Annales de l'I.H.P. Probabilités et statistiques, Tome 33 (1997) no. 6, pp. 797-815. http://archive.numdam.org/item/AIHPB_1997__33_6_797_0/
[1] Oseledec's multiplicative ergodic theorem: a proof, Contemporary Mathematics, Vol. 50, 1986, pp. 23-30. | Zbl
, and (editors),[2] Products of random matrices, Ann. Math. Stat., Vol. 31, 1960, pp. 457-489. | MR | Zbl
and ,[3] On the construction of minimal skew-products, Israel J. Math., Vol. 34, 1979, pp. 321-336. | MR | Zbl
and ,[4] Construction d'un difféomorphisme minimal d'entropie topologique non nulle, Ergod. Th. and Dyn. Sys., Vol. 1, No. 1, 1981, pp. 65-76. | MR | Zbl
,[5] A simple proof of some ergodic theorems, Israel J. Math., Vol. 42, No. 4, 1982, pp. 291-296. | MR | Zbl
and ,[6] The ergodic theory of subadditive stochastic processes, J. Royal Stat. Soc., Vol. B30, 1968, pp. 499-510. | MR | Zbl
,[7] The upper Lyapunov exponent of SL2(R) cocycles: discontinuity and the problem of positivity, in Lecture Notes in Math., Vol. 1186, Lyapunov exponents, Berlin-Heidelberg-New York, pp. 86-97. | MR | Zbl
,[8] Positive Lyapunov exponents for a dense set of bounded measurable SL2 (R)- cocycles, Ergod. Th. and Dyn. Syst., Vol. 12, No.2, 1992, pp. 319-331. | MR | Zbl
,[9] Typical SL2 (R) valued cocycles arising from strongly accessible linear differential systems have non-zero Lyapunov exponents, preprint.
,[10] A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems. Trans. Moscow Math. Soc., Vol. 19, 1968, pp. 197-231. | MR | Zbl
,[11] Unique ergodicity and matrix products, in Lecture Notes in Math., Vol 1186, Lyapunov exponents, Berlin-Heidelberg-New York, pp. 37-56. | Zbl
,