@article{AIHPB_1998__34_2_265_0, author = {Pedersen, J. L. and Pe\v{s}kir, G.}, title = {Computing the expectation of the {Az\'ema-Yor} stopping times}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {265--276}, publisher = {Gauthier-Villars}, volume = {34}, number = {2}, year = {1998}, mrnumber = {1614599}, zbl = {0903.60067}, language = {en}, url = {http://archive.numdam.org/item/AIHPB_1998__34_2_265_0/} }
TY - JOUR AU - Pedersen, J. L. AU - Peškir, G. TI - Computing the expectation of the Azéma-Yor stopping times JO - Annales de l'I.H.P. Probabilités et statistiques PY - 1998 SP - 265 EP - 276 VL - 34 IS - 2 PB - Gauthier-Villars UR - http://archive.numdam.org/item/AIHPB_1998__34_2_265_0/ LA - en ID - AIHPB_1998__34_2_265_0 ER -
%0 Journal Article %A Pedersen, J. L. %A Peškir, G. %T Computing the expectation of the Azéma-Yor stopping times %J Annales de l'I.H.P. Probabilités et statistiques %D 1998 %P 265-276 %V 34 %N 2 %I Gauthier-Villars %U http://archive.numdam.org/item/AIHPB_1998__34_2_265_0/ %G en %F AIHPB_1998__34_2_265_0
Pedersen, J. L.; Peškir, G. Computing the expectation of the Azéma-Yor stopping times. Annales de l'I.H.P. Probabilités et statistiques, Tome 34 (1998) no. 2, pp. 265-276. http://archive.numdam.org/item/AIHPB_1998__34_2_265_0/
[1] Une solution simple au problème de Skorokhod. Sém. Prob. XIII. Lecture Notes in Math. 784, Springer-Verlag Berlin Heidelberg, 1979, pp. 90-115 and 625-633. | Numdam | MR | Zbl
and ,[2] Optimal stopping rules and maximal inequalities for Bessel processes. Theory Probab. Appl., Vol. 38, 1993, pp. 226-261. | MR | Zbl
. and ,[3] Optimal stopping and maximal inequalities for linear diffusions. Research Report No. 335, Dept. Theoret. Stat. Aarhus (18 pp), 1995. To appear in J. Theoret. Probab. | MR | Zbl
and ,[4] On Doob's maximal inequality for Brownian motion. Research Report No. 337, Dept. Theoret. Stat. Aarhus (13 pp), 1995. Stochastic Process. Appl., Vol. 69, 1997, pp. 111-125. | MR | Zbl
and ,[5] Continuous Martingales and Brownian Motion. Springer-Verlag. | Zbl
and ,[6] Diffusions, Markov Processes, and Martingales; Volume 2: Itô's Calculus. John Wiley & Sons, 1987. | Zbl
and ,[7] The Russian Option: Reduced Regret. Ann. Appl. Probab. 3, 1993, pp. 631-640. | MR | Zbl
and ,