
ANNALES DE L’I. H. P., SECTION B

STEVEN N. EVANS

JIM PITMAN
Construction of markovian coalescents
Annales de l’I. H. P., section B, tome 34, no 3 (1998), p. 339-383
<http://www.numdam.org/item?id=AIHPB_1998__34_3_339_0>

© Gauthier-Villars, 1998, tous droits réservés.

L’accès aux archives de la revue « Annales de l’I. H. P., section B »
(http://www.elsevier.com/locate/anihpb) implique l’accord avec les condi-
tions générales d’utilisation (http://www.numdam.org/conditions). Toute uti-
lisation commerciale ou impression systématique est constitutive d’une
infraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AIHPB_1998__34_3_339_0
http://www.elsevier.com/locate/anihpb
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Construction of Markovian coalescents

Steven N. EVANS * and Jim PITMAN ~

Department of Statistics, University of California,
367 Evans Hall # 3860, Berkeley, CA 94720-3860

Ann. Inst. Henri Poincaré,

Vol. 34, n° 3, 1998, p. 339-383 Probabilités et Statistiques

ABSTRACT. - Partition-valued and measure-valued coalescent Markov

processes are constructed whose state describes the decomposition of a
finite total mass m into a finite or countably infinite number of masses
with sum m, and whose evolution is determined by the following intuitive
prescription: each pair of masses of magnitudes x and y runs the risk
of a binary collision to form a single mass of magnitude x + y at rate

y), for some non-negative, symmetric collision rate kernel y).
Such processes with finitely many masses have been used to model

polymerization, coagulation, condensation, and the evolution of galactic
clusters by gravitational attraction. With a suitable choice of state space,
and under appropriate restrictions on 03BA and the initial distribution of mass,
it is shown that such processes can be constructed as Feller or Feller-

like processes. A number of further results are obtained for the additive

coalescent with collision kernel ~) = x + ~. This process, which
arises from the evolution of tree components in a random graph process,
has asymptotic properties related to the stable subordinator of index 1/2.
(c) Elsevier, Paris

RESUME. - Cet article propose une construction des processus markoviens
de coalescence dont l’espace d’état - un espace de mesures ou une partition
ensembliste - decrit la decomposition d’une masse totale finie m en un
ensemble fini ou denombrable de masses dont la somme reste constante et

egale a m, et dont revolution est determinee par la regle suivante: chaque
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340 S. N. EVANS AND J. PITMAN

paire de masses de magnitudes x et y court le risque d’une collision binaire
pour former une masse unique de magnitude x + y avec un taux (x, y)

est un noyau positif et symetrique decrivant le taux de collisions. De
tels processus impliquant un nombre fini de masses ont servi de modele
a des phenomenes de polymerisation, de coagulation, de condensation ou
encore pour decrire 1’ evolution d’amas galactiques sous l’influence du

champ gravitationnel. Avec un espace d’ état convenablement choisi, et

sous reserve des restrictions adequates sur 03BA et la distribution initiale de

masse, on demontre que ces processus peuvent etre construits comme des

processus de Feller (ou similaires a ces processus). On obtient plusieurs
autres resultats pour le processus de coalescence additive, dont le noyau est

x(x, y) = x + y. Ce processus, qui emerge de 1’evolution des arbres au sein
d’un processus de graphe aleatoire, a des proprietes asymptotiques liees au
subordinateur stable d’indice 1/2. © Elsevier, Paris
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341CONSTRUCTION OF MARKOVIAN COALESCENTS

1. INTRODUCTION

Markovian coalescent models for the evolution of a system of masses

by a random process of binary collisions were introduced by Marcus [29]
and Lushnikov [27]. Such models have been applied to chemical processes
of polymerization [20], and other physical processes of coagulation and
condensation such as the evolution of galactic clusters by gravitational
attraction [40]. See Aldous [6] for a recent survey of the literature of

these models and their relation to Smoluchowski’s mean-field theory of
coagulation phenomena.
While our interest in these models is mathematical, we use cosmological

terms, and imagine a stochastic mechanism in which smaller galaxies merge
through collisions to form larger galaxies. We suppose that at any given
time, each pair of galaxies of masses say x and y runs the risk of a binary
collision to form a single galaxy of mass x -t- ~ at rate y), where x is
some non-negative, symmetric function. We write this intuitive prescription
symbolically as

Assuming that the universe consists of a finite number of galaxies, each
containing a finite number of particles of equal mass, the state of the

universe is commonly represented as a partition of n, that is an unordered
collection of positive integers with sum n, where n is the total number of
particles in the universe. Transition rates between various partitions of n
implied by (1) then determine the distribution of the state of the universe
at time t > 0 given some initial state at t = 0 via the Kolmogorov forward
equations for the finite-state Markov chain [29, 27, 20].

It is of interest in many settings to study limiting models in which ~ 2014~ oo.
One limiting regime which has been extensively studied [20, 46, 45, 6] is
the thermodynamic limit, in which the n particles are supposed to occupy
some volume V, the collision rate is understood as a rate per unit time per
unit volume, and n and V are allowed to tend to infinity in such a way that
in the limit there is at each time t a deterministic density per unit volume of
galaxies containing i particles, say for z = 1, 2,3,... These densities
then satisfy a system of differential equations known as Smoluchowski’s
coagulation equations [47]. In this limit, the resulting process is essentially
deterministic rather than stochastic. Normal approximations to fluctuations
of the concentrations in large finite volumes relative to means determined
by the Smoluchowski equations have also been obtained [45, 16].

Vol. 34. n° 3-1998.



342 S. N. EVANS AND J. PITMAN

Our concern here is with a different limiting scheme, in which the

number of interacting galaxies tends to infinity, but a fixed total mass m
is maintained. After passage to the limit, the state at time t is a random

decomposition of the total mass m into a countable number of masses
with sum m. The problem is to construct a Markovian evolution of masses
subject to the intuitive prescription of rates (1), allowing the interaction
of a countably infinite number of masses instead of just a finite number.
With appropriate assumptions on 03BA and the initial distribution of masses,
we establish the existence of such a process, which we call a x-coalescent,
as a limit in distribution of a finite-state chain defined by a finite number
of masses evolving with the same collision rate kernel x. We assume

throughout that our system has a finite total mass m. By scaling, we can
assume m = 1. But see also Aldous [I], who obtains interesting results for
the multiplicative coalescent with collision rate ~) _ xy in a system
with infinite total mass.

Informally, we regard a x-coalescent as an evolving family of

agglomerating galaxies with total mass 1. The only distinguishing feature of
a galaxy is its mass. However, to rigorize this notion it is convenient to label
the galaxies present by elements of the set N :_ ~ l, 2, ... ~, and to think of
the x-coalescent as taking values in the set S of probability measures on N.
Different labeling conventions then lead to different "codings" of essentially
the same object as an S-valued processes. This point of view is introduced in
Section 2, where we formulate a general definition of an S-valued coalescent
process, and relate this definition to the Marcus-Lushnikov model.

Section 3 presents another formalization of coalescents as partition-
valued processes. This perspective encompasses Kingman’s coalescent [24].
Each block of the partition at time t represents a collection of initially
present galaxies that have succesively merged by some sequence of binary
coalescences into a single galaxy. Section 3.2 records some explicit formulae
for the semigroup of the additive coalescent (that is, the 03BA-coalescent with
x(x, y) = x + y) viewed as a partition-valued Markov chain.

Partition-valued coalescent processes with infinitely many galaxies are
constructed in Section 4. Various codings of measure-valued coalescent
processes with infinitely many galaxies are then constructed in Section 5 as
deterministic transformations of corresponding partition-valued processes.

Section 6.1 presents asymptotics as n --~ oo for the additive coalescent
when the initial state is n galaxies of mass These asymptotics provide
one motivation for the rigorous construction of such an additive coalescent
with an arbitrary initial state consisting a countable number of masses.
Both multiplicative and additive coalescents arise combinatorially from the

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques



343CONSTRUCTION OF MARKOVIAN COALESCENTS

study of random graphs [1, 33], and this limiting regime arises naturally
in that work.

Section 6.2 investigates a particularly interesting feature of two of the
codings of the additive coalescent as a measure-valued process described
in Section 5. For a large class of initial mass distributions we show that the
asymptotic ratio between a remote tail of the mass distribution at some later
time t and the corresponding tail at time 0 is e-’Yt for a suitable constant ~y.
Consequently, the value of the time parameter can be reconstructed from
the current and initial states of the process.

Section 7 records some connections between our approach to coalescent
processes and Kingman’s theory of exchangeable random partitions. We
conclude in Section 8 by mentioning some open problems. See [18] for
a treatment of infinitely-many-species analogues of the classical Lotka-
Volterra equations which appear as hydrodynamic limits of the kinds of
coalesent processes studied here, and [19, 36] for other recent developments.

Measure-valued Markov processes have recently been the subject of
considerable study, particularly those that arise in population genetics (see,
for instance [17, 14]). These processes have arisen as high-density limits
of the empirical measure for a particle system in which there is some sort
of Markovian motion of the individual particles combined with between-
particle interactions involving a small number of particles. But in these
models, even when the values of the limiting process are discrete measures,
it is usually the case that mass moves between atoms in a continuous
manner. By contrast, in the processes we study here; mass transfers occur
by a purely discontinuous process.

2. MEASURE-VALUED COALESCENTS

The term coalescent has been applied to various mathematical models
for a system of masses evolving over time in such a way that smaller
masses collide to form larger masses, with conservation of mass [29, 1, 6].
Kingman [24] developed a coalescent model in mathematical genetics to
describe lines of descent in a large population. This section offers a general
framework for coalescent processes which is adequate for the construction
of Markovian coalescent processes with collision rate ~ for a variety of
kernels ~.. ;

Vol. 34, n° 3-1998.



344 S. N. EVANS AND J. PITMAN

2.1 Partial orderings of measures on N

We will describe the state of the system of coalescing galaxies at a given
time by a sequence of non-negative components

We interpret Xi as the mass of the ith galaxy in some inventory of galaxies.
If x2 = 0 it is understood that there is no galaxy labeled i in this inventory.
Set N :_ ~ 1, 2, ... ~. We regard x a measure on N by defining

for subsets I of N. So xI is the total mass of all galaxies with labels in
the set I. We assume further that the total mass xN is finite, and reduce
by scaling to the case = 1. Thus the state space of our coalescent

processes will be identified as the set S of all probability measures on N,
or some suitable subset of S.

Given two states x, y E S , say x is finer than y, or y is coarser than x,
and write x ;5 y, if there is a map W from N to N such = y. Here

W (x) denotes the push-forward of x by ~, defined by

We call ~ the relation of refinement on S. Recall that a binary relation 
defined on a set S is called a partial ordering of S if  is reflexive (x  ~),
antisymmetric (x  ~ and y  x implies ~ _ ~) and transitive (x  ~
and y  z implies x  z). The relation of refinement on S is reflexive and
transitive, but not antisymmetric. Write x ~ y and say x is a rearrangement
of y if x ~ y and y ~ x. Then - is an equivalence relation on S. It is easily
seen that x N y iff there exists a bijection /3 : ~i : x2 > 0 ~ --~ ~ j : xj > 0 ~
such that x2 = y03B2(2) for all i with xi > 0. Each - equivalence class has a
unique representative y which is ranked, meaning that Yl > ?/2 > ... > 0.
Let $~ denote the subset of S comprising all ranked states, and define

RANK : by RANK(x) = xl where xl is the unique ranked state that is
a rearrangement of x. The restriction of ;::S to S~ defines a partial ordering of

~ 
sto

S~ . Let  denote the stochastic ordering on S, that is the partial ordering
of S defined by

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques



345CONSTRUCTION OF MARKOVIAN COALESCENTS

It can be shown that x ~ y implies yl 
) 
but the converse is false. For

example, (2/3,1/3, 4, ...) is stochastically smaller than, but not coarser
than (1/2,1/2,0,...). Note also that y where y = ~ (x) with

sto

03A8(k) ~ k for all k ~ N (we call such a map leftward), then y ~ x.

2.2 Coalescent evolutions and processes

Let the time parameter set 0 C f~ be a possibly infinite interval which
may be open or closed at either end. Consider a map (x (t) , t E ~ ) from tt
into some subset S’ of S. Write x(t) = (xl (t), ~2 (t), ...). Interpret 
as the mass of the galaxy labeled i at time t.

Given a topology on S’, say that (x(t), t E ~) is an S’-coalescent evolution
if it is cadlag and for some family of tracking functio.ns ~s,t : I~ --~ N,
s, t E U, s  t, satisfying the composition rule

there is conservation of mass:

In other words, for each pair of times s, t E  H with s  t, the mass 
of each galaxy in existence at time s is identified as part of the mass

of some unique galaxy in existence at the subsequent time t, where
j = The value of Ws,t(i) is of no significance if = 0. As

a consequence of (7), 
’

Call an S’-coalescent evolution leftward if it admits a system of leftward
tracking functions. It is not hard to show that if the topology on S’ is at
least as strong as the topology of weak convergence, and (x(t) , t E ~ !)’ is
a cadlag S’-valued function such that (8) holds, then there is a leftward
5’ -coalescent evolution (y(t), t E ~) such that x(t) ~ y(t) for all t E t.

The notion of a family of tracking functions satisfying the composition
rule captures mathematically the intuitive idea of a merger history tree,
developed less formally in [26, 39, 40] in the cosmological setting. Loosely
speaking, a leftward S’-coalescent evolution describes the evolution of a
universe using a labeling scheme such that when galaxies coalesce the
label of the resulting galaxy is no greater than the labels of any of the

participants in the coalescence.

Vol. 34, n° 3-1998.



346 S. N. EVANS AND J. PITMAN

For x E S and 1  z  j  oo define E S by

Thinking of x as a sequence of masses placed on the positive integers, 
is derived from x by removing mass ~~ from place j and adding it to the
mass ~2 at place z. Call an S’-coalescent evolution (x(t), t E C) basic if it is
leftward and for all t E ~ with x(t-) ; x(t) there exist i  j (depending on
t) such that x(t) = x(t-)i~3. Call an S’-coalescent evolution (x(t), t E 0)
binary if there exists a basic S’-coalescent evolution (y (t) , t E I) such

that x(t) N y(t) for all t E U. Intuitively, a binary S’-coalescent evolution
describes the evolution of a universe in which galaxies only coalesce in
pairs. Moreover, in the basic case the galaxies are labeled so that each
new galaxy formed by a binary collision is given the smaller of the labels
of the two colliding galaxies while the labels of all other galaxies remain
unchanged.

It is clear that if (x(t), t E ~) is a basic S’-coalescent evolution, RANK

maps S’ into S" and both S’ and S" are equipped with topologies that
make RANK continuous, then (RANK 0 x( t), t E ~) is a binary S"-coalescent
evolution. A similar comment holds with the map RANK replaced by the map
SHUNT, where SHUNT : S - S is the map that "squeezes out" 0 masses; for
example, for a, b, c, d > 0 with a -~- b -E- c ~-- d = 1

In this case the resulting S"-coalescent evolution is leftward as well as
binary.

PROPOSITION l. - Suppose that (x(t), t E ~) is an S’-coalescent evolution

for a topology on S’ C ~ which is at least as strong as the topology of weak
convergence, and that either x(t) E s~ for each t E 0, or that (x(t), t E 11) is
leftward. Then for all k ~ N, the function t ~ 03A3~l=k xl(t) is non-increasing,
and the function t ~ ~,~ (t) is of bounded variation, with total variation at
most 2. Moreover, these functions have no continuous component (that is,
they are pure jump,functions).

Proof. - The following argument shows that the function t ~ ~~° ~ 
is non-increasing with no continuous component, assuming that (x(t), t E ~)
is a leftward S’-coalescent. The rest is left to the reader. Without loss of

generality, it can be supposed that 0 = Consider the sub-probability
measure valued function ~~n~ (t) defined by .- 

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques



347CONSTRUCTION OF MARKOVIAN COALESCENTS

where Wo,t is the tracking function such that x(t) = Wo,t(x(0)) and

=  n). For k ~ N, n e Nand t > 0 let

Then t f2014~ ak,n(t) is an non-decreasing pure jump function and so is

t ~--~ ak,n(t) for each r~ E N. Since .

this function too is non-decreasing with no continuous component. D

Given an S’ -valued stochastic process (X(t, w), t E S~ ) defined

on some probability space (S2, .~’, P), call the process an S’-coalescent if
for all cv the sample path t )2014~ X (t, w) is an S’-coalescent evolution,
and the associated tracking functions from N to N can be chosen

such that c~ H ’~s t (2) is 0-measurable for all s, t e a and i E N. The

measurability assumption means that for each pair of times s and t, and
each pair of labels i and j, the event ~~s,t(2) = j~, that the galaxy labeled
i at time s is contained in the galaxy labeled j at time t, has a well defined
probability ,j~. -

2.3 Markovian S-coalescents

For x E S let ~x be the number of non-zero components of x. We
interpret ~jf as the number of galaxies present when the universe is in

state x = (x1,x2,...). Let SK := { xES: #x  ~} be the set of

finitely supported probability measures. Note that if (x(t), t E ~) is .an

SK-coalescent evolution, then the function t ~ x(t) has only finitely many
jumps on each compact sub-interval 

Let be a non-negative measurable symmetric function of

x, y E ~ 0,1 ~. Call such a function r~ a collision kernel. Call a process
X := (X(t), t E fl) an (Sx, x)-coalescent if X is a time-homogeneous
Markov SK-coalescent process of jump-hold type, with state space SK n S’
for some appropriate subset S’ of S, and transition rates of the form

where x?3 is some rearrangement of 

Vol. 34, n° 3-1998.



348 S. N. EVANS AND J. PITMAN

Three different K)-coalescents, which we describe as basic, shunted
and ranked are defined by the following choices of x?3 and S’ :

It is easily shown that if X is any (SK, 03BA)-coalescent then RANK o X
is a ranked (SK, 03BA)-coalescent. So the various (SK, 03BA)-coalescents differ
only in the way that galaxies are relabeled after collisions. Note also that
if X is a basic (SK, 03BA)-coalescent, then the sample paths of X are basic
SK-coalescent evolutions, and SHUNT o X is a shunted (SK,  )-coalescent
whose sample paths are binary, leftward ~S~-coalescent evolutions. For
n E N let Sn denote the set of elements of Sl each of whose coordinates
is a multiple of 1/?~. A ranked (S K ,  ) -coalescent with time parameter set
~ = R+ and initial state in Sn takes all of its values in Sn, so we may
call it an (S~n, 03BA)-coalescent. By multiplication by n, the non-zero terms of
an element of Sn identify a non-increasing sequence of positive integers
with sum n, that is a partition of n. With ~Sn so identified with the set of
all partitions of n, what we call here an x)-coalescent is identical to
the stochastic coalescent model of Marcus [29] and Lushnikov [27], with
collision rate between each pair of galaxies of z and j particles.
Our aim now is to construct Markov processes which are appropriately

continuous extensions of the basic, shunted and ranked coalescents, under
suitable assumptions on the collision kernel ~. Ideally, we would like to
extend the state space of the basic coalescent to all of S 1, and that of the
shunted and ranked coalescents to S* and Sl respectively. We achieve this
in the important special case of the additive kernel ~) _ ~(x ~ y) for
some constant K > 0. See also Example 7 regarding the case y) = K,
which is much more elementary. We consider also the case of a Lipschitz
kernel, that is a 03BA subject to the conditions

for some constant K, where it is supposed that ~) is defined if either
x or y is equal to 0, though y) is not then interpreted as a jump rate.
For a Lipschitz kernel, we are only able to extend the three coalescents
to the state spaces Sf, Si and where for ,~3 > 0 and S’ C S we set

~~ . - S’ n S, with ?~ the set of probability measures x on N such that

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques



349CONSTRUCTION OF MARKOVIAN COALESCENTS

00. For treatment of shunted and ranked coalescents we

equip ?~ with the metric -

Note that $o is the restriction to S of the l1 metric, and the topology
induced on S by ~o is the topology of weak convergence. For the basic
coalescent we work with

Note that (S~, b,~) is a complete, separable, metric space for each ,~ > 0,
and that the topology induced by 0,~ is strictly stronger than that induced
by ~,~ . The space S,~ with the topology induced by 0,~ is homeomorphic to

when this set is equipped with the relative topology inherited from the
product of the ~,~ topology on S~ and the product topology 
In particular, (Sa, ~,~) is a Lusin space. Given a metric space (E, (), let
D(R+, E) or D(R+, E, () denote the space of càdlàg functions from R+
into E equipped with the Skorohod topology. -

Define kernels *03BA and ~03BA on S* and S~ respectively, by setting
~y~), ~~(x, ~y~), and ~c~(x, ~y~) equal to as in (13) for

the appropriate choice of as in (14). The following theorem is proved
in Section 5:

THEOREM 2. - Suppose either that ~3 = ~ and b) = K(a + b) for
some constant K > 0, or that 03B2 = 1 and 03BA is subject to the Lipschitz
condition (15). There exist Hunt processes X, X*, and with state-spaces

~~), (S~, b,~), and (~5~, ~,~), laws x E x E ~~),. and
x E ~~), and transition semigroups (Qt )t>o, and (Qt )t>o,

such that the following hold.

(i) Almost surely, the sample paths of X (resp. X*, are basic S03B2-
coalescent evolutions (resp. binary leftward S03B2-coalescent evolutions,
binary S03B2-coalescent evolutions).

(ii) If x E S~ n SK (resp. x E s~ n x E s~ fl then X (resp.
X *, under Q~x is a basic (resp. shunted, ranked)
(SK,03BA)-coalescent process.

(iii) The kernel (resp. ~c~) is a jump kernel for X (resp. X*, 
Vol . 34, nO 3-1998.



350 S. N. EVANS AND J. PITMAN

(iv) The maps x r--~ Qt(x, ), t > 0, from a~) into the space of
probability measures on (S~, 0,~) equipped with the topology of
weak convergence, and the map x H ~x from L~,,~) to the

space of probability measures on S~, 0~) equipped with the
topology of weak convergence, are continuous. Analogous continuity
results hold with (S~, 0~, Qt, replaced by (S~, b~, or

(~~~ s~~ ~).
To spell out the meaning of (iii), the kernel called the jump kernel,

together with the time parameter as a deterministic additive functional,
form a Levy system for the process in question [9]. For instance, for the
basic coalescent, this means that the identity

holds for all x E ?~ and all non-negative measurable f.
The two properties (ii) and (iv) of the theorem uniquely specify each

collection of laws E (Q;, x E s~‘), and (Q~, x E Sl). Further
path regularity prop.erties of X, X* , and Xl can be read from Proposition 1.
It would be interesting to have a more direct characterization of the laws
of these processes via a generator or a martingale problem, but we do not
pursue that here.

3. PARTITION-VALUED COALESCENTS

Let (x(t), t E Q) be an S-coalescent evolution with associated tracking
functions ( ~ s,~ ) . Note from the conservation of mass property (7) that if
s E I, then x(t) for each t > s can be recovered from x(s) and the sub-
collection of pre-images ({j}). j ~ N, that consists of the non-empty
sets. Observe that the non-empty pre-images form a partition of the set N.
(Recall that partition of a set K is a collection ~Ka ~ of non-empty subsets
of K such that Ka n Ka = 0 for /~ and ~a Ka = K ; the subsets ~a
are called the components or blocks of the partition.) To construct various
S-coalescents, we first construct their associated processes of partitions
of N.

Annales de l’lnstitut Henri Poincaré - Probabilites et Statistiques
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Every partition v of of a set K gives rise to an equivalence relation Nv
on K by declaring that a b if a and b belong to the same component.
All equivalence relations on K arise this way. Given two partitions v and
w of a set K, say that v is a refinement of w, or that w is a coarsening
of v, and write v  w, if every component of w is the union of one

or more components of v ; that is, a b implies a b. If v is a

partition of a set K and J is a subset of K, the restriction of v to J is
the partition of J associated with the restriction to J of the equivalence
relation associated with v.

For f : K ---~ K, the collection of E K,
f -1 ( ~ 1~ ~ ) ~ ~ ~ is a partition of K that we call the partition induced
by f. Note that for g : I~ ~ K the partition induced by g o f is a
coarsening of the partition induced by f. For example, if (x(t), t E ~) is a
S-coalescent evolution with associated tracking functions ( ~ S, t ), then the
composition rule implies that for s, t, u E ~ with s  t  u, the partition of
N induced by W S,u is a coarsening of the partition induced by W s,t.

3.1 Pn-coalescents

Let P n denote the set of partitions of Nn _ ~ 1, ... , n ~ . Say that a
Pn-valued function (w(t), t E D) is càdlàg if it is right continuous with
left limits in the discrete topology on Pn. Say that (w (t) , t E ) is a

Pn-coalescent evolution if it is càdlàg and w(s)  w(t) for s, t ~ B,
s  t. Finally, say that a Pn-coalescent evolution (w(t), t E ~) is binary if
whenever w(t-) # w(t) the partition w(t) is obtained by coalescing two
of the components of w(t-).

Call a Pn-valued stochastic process (Wt, t E ~) a Pn-coalescent (resp. a
binary Pn-coalescent) if the sample paths are almost surely Pn-coalescent
evolutions (resp. binary Pn-coalescent evolutions).

Let p := (pi, ... , pn) be a sequence of strictly positive numbers. For
I C N~ set pI = pi. Define a binary Pn-coalescent Markov process
(Wt, t > 0) by specifying that two components I, J coalesce into a single
component at rate pJ) for some symmetric non-negative collision
kernel ~. Regard p2 as the mass of an ith proto-galaxy, and interpret the
components of Wt as the galaxies present at time t. Thus ( Wt , t > 0)
describes a process in which pairs of galaxies coalesce at a rate depending
on their masses. Call the Pn-valued Markov process (Wt, t > 0) the

(Pn, 03BA)-coalescent with proto-galaxy mass distribution p, or the (Pn, 03BA,p)-
coalescent for short. Note that x and p determine only the transition rates
of the (Pn, x, p)-coalescent. The initial state Wo can have any probability
distribution over Pn.
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Suppose now that (Wt, t > 0) is a ,p )-coalescent for a p with
pi -f- ~ ~ ~ + pn = 1. Define an SK-valued process X := (X(t), t > 0) by
setting = pj if Wt contains a component J whose least element is
i, and Xi (t) = 0 otherwise. In particular, Xi (t) = 0 for i > n. It is easily
checked that X is a basic x)-coalescent, as defined in Section 2.3.
Similarly, define another SK-valued process X* = (X* (t), t > 0) by setting

equal to the mass of the galaxy at time t containing the proto-galaxy
labeled 1, and equal to the mass of the galaxy at time t containing the
least numbered proto-galaxy not in the galaxy containing the proto-galaxy
labeled 1, and so on. Then X* = SHUNT oX is a shunted (SK , x)-coalescent.
Of course Xl := RANK o X is a ranked 

3.2 The finite additive coalescent

Call a with S’ C SK and y) = x + y an (S’, +)-
coalescent. Similarly, call a (Pn, k,p)-coalescent with 03BA(x, y) = x + y a
(Pn , + , p)-coalescent. Refer to both such processes as additive coalescents.
The additive S~n-coalescent has been studied by a number of authors [20,
27, 42, 43] as a particular case of the Marcus-Lushnikov model for which
it is possible to make explicit calculations.
As observed by Hendriks et al. [20], the 03BA)-coalescent process with

collision kernel y) = a + b(x + ~) for constants a and b has the

following property. For each ~ E N and all states x with ~x = l~, the total
rate of transitions out of state x and into the set of states ~y : ~y = 1~ - 1 ~
has the same value :== ( 2 ) a + ( l~ - It is easily seen that
this property is shared by any (SK, x)-coalescent with ~ of this form.
Consequently, if (X(t), t > 0) is such a coalescent, given ~X(o) = n for
some fixed n, the process (~X(t), t > 0) is a Markovian death process
with death rates Moreover, this death process is independent of
the discrete-time jumping chain defined by the sequence of n distinct states
through which X(t) passes as ~X(t) decreases by steps of 1 from n to 1.

In particular, if (X(t), t > 0) is an (SK, +)-coalescent, the death rate
when there are k galaxies is = k - 1. It follows [44, §f .2.1 ] that

given ~X(0) = x for any x with ~x = m there is the identity in distribution

where the ~i are independent exponential variables with rate 1. Consequently
[27, 20], the conditional distribution of ~X(t) - 1 given X(0) = x with
~jc = m is binomial with parameters m - 1 and e-t.
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Consider now a (Pn, -~-,p)-coalescent W = (W(t), t > 0) constructed
from the proto-galaxy masses as in Section 3.1, assuming

= 1. For W there is the following straightfoward extension of the
results of the previous paragraph. Let #w denote the number of components
of a partition w. Given #W(0) = m the process (#W(t) - 1, t > 0) has
the same distribution as the process displayed in (18), and this process is
independent of the sequence of distinct partitions embedded in the process
(W (t), t > 0). The sequence of distinct partitions is a discrete time Pn-
valued Markov chain whose one step transition probabilities are as follows:
given that the current state is the partition w = ~B1, ... , of the

next distinct partition is derived from w by merging the components BZ
and Bj with probability (pB2 -f- pB~ )/(1~ - 1). Such a Markov chain, call
it a discrete-time (Pn, +, p)-coalescent, will now be constructed following
the method of [33].

For a finite or countable set S, call a subset g of S x S a directed graph
labeled by S. Say (s, t) is an edge of g directed from s to t if (s, t) E g.
Call g a rooted forest if each connected component of g is a rooted tree,
with the convention that edges of a tree are directed away from its root.

CONSTRUCTION 3. - Let X 1, ... , be independent random variables
with distribution p on N~. Define a sequence of random rooted forests

 n) in reverse order as follows. Let Fn be the rooted forest
with vertex set with no edges, and n trivial tree components. For

, 

1  I~  n - 1, given that ..., have been defined so that is

a rooted forest of 1~ -~ 1 trees labeled by S, define by addition to 0k+1 of
a single directed edge from Xk to Rk, where given and Xk the vertex
Rk is picked uniformly at random from the set of k roots of the k trees
in 0k+1 other than the tree containing Xk. For 1  1~  n let Ilk be the
partition of whose components are the connected components of 

It is obvious by construction that the sequence (IIn, ... , 03A01) is
a discrete-time +,p)-coalescent started at the partition of into

singletons. As shown by an induction in [33], for each 1  l~  n the
forest has the distribution

where Csf is the number of children or out-degree of vertex s in the rooted
forest f and Fkn is the set of all forests of k rooted trees labeled by 
Moreover, for each 1  ~ ~ r~ - 1, conditionally given 1  j  k)
the forest is derived from ~’~ by deletion of (Xk, Rk), which is an
edge picked uniformly at random from the set of n - k edges of 7k.
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For k = 1 the fact that probabilities in the distribution (19) sum to 1

amounts to Cayley’s multinomial expansion over trees [13, 38, 41, 33, 35] :

where Tn .- Fi~ is the set of nn-l rooted trees labeled by and

the formula holds as an identity of polynomials in n commuting variables
ps,1  s  n.

The probability of the event ~,S’1, ... , ,S’~ ~ ~ is obtained by
summing the expression (19) over all forests f whose tree components
are S~ , ... , Sk. Write the product over in (19) as the product over
1  i  1~ of products over The sum of products is then a product of
sums, where the ith sum is a sum over all trees labeled by Each of

these sums can be evaluated by Cay ley’s expansion (20) to obtain

where pA := is thep-mass of A and ~A~ is the number of elements
of A. We note as a consequence of this formula the following identity of
polynomials in commuting variables ~S,1  s  n: for each 1  1~  n

where the sum on the left side is over all unordered partitions of Nn into
k components {81,..., S~ ~, and xs See [35] for a review of
related identities and their probabilistic and combinatorial interpretations.
The following proposition combines the above results to give an explicit

description of the semigroup of the +, p)-coalescent:
PROPOSITION 4. - Let (W(t), t > 0) be a 

probability distribution p. Then for each partition w = ~R1, ..., of 
and each partition ~,S’1, ..., of that is a coarsening of w,

Proof. - Consider first the special case when w is the partition of into

n singletons. Write II~ for the state of W(t) when ~W (t) = k. The result
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follows from the observations that ~W (t) - 1 has a binomial distribution
with parameters n - 1 and the distribution of II~ is identical to that of
II~ displayed in (21), and ~W (t) is independent of 1  k  n). For a
general initial partition w, the only possible states of W (t) are coarsenings
of w. Every such coarsening is identified in an obvious way by a partition of

With this identification the (I~n, -f-, p) coalescent with initial partition w
is identified with the (f~l~, --E-,p’) coalescent with initial state the partitition
of into singletons, and p2 = P Ri , i E Nj. The general case then follows
from the special case. D 

The following variation of Construction 3 will be used in Section 4.

CONSTRUCTION 5. - Let p = E ~ ~ be a finite measure on a finite
or countable set ~, with p~ > 0 for all a E ~. Let (Y~)~°_o and be

independent random variables, with each Yj distributed according and
each ~~ an exponential variable with rate 1. Let be the random
rooted tree with vertex set £ and set of directed edges

For t > 0 let .~’(t; (Y~)~°_o, (~~)~E~), be the random forest with vertex set
~ and directed edge set

Let II(t; (Yj)~j=0, (~03C3)03C3~03A3) be the random partition of 03A3 whose components
are the tree components of ~’(t; (Y~)~°_o, (~a)~.E~).

PROPOSITION 6. - Suppose ~ _ Then (II(t; (Y~ )~° 0, t > 0)
is a (Pn, +, p)-coalescent starting from the partition that consists of all
singletons.

Proof - By application of the Markov chain tree theorem [12] [28, §6.1] ]
to the Markov chain formed by a sequence of independent random variables
with identical distribution p, for each rooted tree t labeled by N~

for some constant c. Cayley’s multinomial expansion (20) implies that
c = 1, so the distribution of ~((Y~)~° o) is identical to the distribution of

F1 displayed in (19). The conclusion now follows from the description of
the process ,1  k  n) given below (19), and the independence of
the jump times and the discrete skeleton of a (P n, +,p)-coalescent. D
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3.3 P~-coalescents

Recall that P n is the set of partitions of = ~ l, ... , n~. Let denote

the set of partitions of N. For m E N and v E or v E Pn with m  n,

write for the restriction of v to Topologize each Pn with the
discrete topology and equip P~ with the topology generated by the maps

(that is, the weakest topology with respect to which all of the maps
~rn are continuous). Thus a Poo-valued function (w(t), t E ~) is cadlag if
and only if for all n E N the Pn-valued function o w(t), t E ~ I)
is cadlag. Say that (w(t), t E I) is a P~-coalescent evolution (resp. a
binary P~-coalescent evolution) if for all n E N the Pn-valued function

E I) is a Pn-coalescent evolution (resp. a binary Pn-coalescent
evolution). Of course, (w(t), t E I) is a binary P~-coalescent evolution
if and only if whenever w(t-) ~ w(t) the partition w(t) is obtained

by coalescing two of the components of w(t-). We call a Poo-valued
stochastic process with such sample paths a P 00 -coalescent or a binary
P~-coalescent, as the case may be.

EXAMPLE 7. - Kingman’s P~-coalescent. Kingman [24, 25] proved the
existence of an essentially unique P~-coalescent (Wt, t > 0) starting
at the partition of N into singletons such that for each n the process
(7rn o Wt, t > 0) is a Markovian (Pn , x, p)-coalescent with collision kernel

1 and arbitrary weights p. At each time t > 0, the partition Wt of
N has an almost surely finite number of components Dt, where (Dt, t > 0)
is a pure death process with state space N coming down from Do+ = oo
with an exponential hold at each k > 2 with mean ( 2 ) 1 before jumping
down to k - 1. Kingman [24, Theorem 3 and §5], showed that for arbitrary
t > 0 and k E N, conditionally given Dt = k, each of the k components
of Wt has an asymptotic frequency; moreover if these frequencies are

listed in ranked order as say (X~ (t), X2 (t), ... X~ (t)) then the conditional
distribution of this random vector given (Ds, s > 0) with Dt = k is

identical to the distribution of the ranked lengths of k subintervals obtained
by cutting the unit interval ] 0,1 ~ [ at k - 1 points picked independently and
uniformly at random from ]0,1[. Let (Xl(t),t > 0) denote the S-valued
random process defined by

It follows easily from these results of Kingman that (Xl(t), t > 0) is a

ranked 03BA)-coalescent process with y) = l. See Section 7 for a
generalization of this construction. Another modification of this construction
allows the definition of basic, shunted and ranked (SK, 03BA)-coalescents for
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this ~ with time parameter t > 0, with entrance laws derived from an

arbitrary distribution of mass at time t = 0+. See [36] for details in the
ranked case.

In principle, the distribution of a P oo-coalescent (Wt, t E ~) is determined
by the collection of finite-dimensional distributions of each of the finite state
space Pn-coalescents E ~ ) . The analysis of ( Wt, t E D ) is greatly
simplified if each of these Pn-coalescents is Markovian, as is the case for
Kingman’s coalescent and the more general class of coalescents considered
in the next example. But this method does not extend easily to the kinds of
P~-valued coalescents which are subject of this paper. So in the following
sections we use other methods to construct these P~-coalescents and their
associated S-coalescents.

EXAMPLE 8. - The A-coalescent. It is shown in [36] that a large class
of ’~~-valued Feller processes (Wt, t > 0) is obtained by supposing that
for each n the process o Wt, t > 0) is Markovian with transition rates
of the following form: when the partition of has b components, each

k-tuple of components is merging to form a single component at rate Ab,k
for some array of rates ( ab, ~ ) . This prescription turns out to be consistent
if and only if x~-2 ( 1 - for all 2  h  b for some

finite measure A on [0,1]. Kingman’s coalescent is obtained for A = So,
a unit mass at 0, while the coalescent recently derived by Bolthausen
and Sznitman [12] from Ruelle’s probability cascades, in the context of
the Sherrington-Kirkpatrick spin glass model in mathematical physics, is

obtained for A uniform on [0,1]. The A-coalescent has binary collisions
only in Kingman’s case A = -

The following lemma collects together some simple facts about 

LEMMA 9. - (i) The metric d on defined by

induces the topology on 

(ii) The space is compact and totally disconnected.
(iii) A sequence {03C5k}k~N in converges to v if and only if for each

n E N, 03C0n03C5 for all k sufficiently large.
(iv) The algebra of functions {f o 03C0m : f E rn E N} is dense

in 

Vol. 34, n° 3-1998.



358 S. N. EVANS AND J. PITMAN

4. CONSTRUCTION OF INFINITE
PARTITION-VALUED COALESCENTS

Our aim in this section is to construct for suitable probability distributions
p E S+ := {x E S : xi > 0, Vi E N} and a suitable kernel K a binary
Poo-coalescent Markov process Wk such that two components I, J coalesce
into the single component I U J at where pI := 
We usually regard K as fixed, so the dependence of various objects on K
will be largely supressed in the notation. So we will write for instance WP
instead of Wk. As in section 3.1 we think of the components of the partition
Wp (t) as the galaxies present at time t. The elements of a component are
the labels of the proto-galaxies that have been merged together to form
the galaxy. Define a kernel on P~ by declaring that 03BDp03BA(w, .) is

the measure that, for each unordered pair I, J of components of w, places
mass on the coarsening of w obtained by coalescing I and J.
Our aim then is to construct, for given K, a Markovian coalescent process
with jump kernel v~ for as many p E ?~ as possible.

THEOREM 10. - Suppose either b) = K(a + b) for some constant
K > 0 and f3 = 0, or that f{; is subject to the Lipschitz condition (15)
and f3 = 1. For each p G 03B2+03B2 := {p E S+ : 03A3kk03B2pk  ~} there is a
unique ~~-valued Feller process WP with laws (~p , w E such that

the following hold.

(i) If w G P~ is such that n n + 1 n + 2 .. , for some
n E N, then 03C0nWp under is a (Pn, started at

?T’22U, where -= p1, - .. , p~’z~ 1 := ~~ pW
(ii) Almost surely, the sample paths of WP are binary P~-coalescent

evolutions.

(iii) The kernel v~ is a jump kernel for WP.

DEFINITION 11. - Call the process described in Theorem 10 the »,p)-
coalescent.

Note that for given f{; and p the laws (I~p , w G are uniquely
specified by K and p through part (i) of the theorem and the Feller property.
As with Theorem 2, it would be interesting to have a more direct generator
or martingale problem characterization of WP.
Theorem 10 is a consequence of coupling arguments carried out in

Lemmas 14, 16 and 17. Central to these arguments is the following set-up.

DEFINITION 12. - A coupled family of coalescents is the following
collection of ingredients:
. a collision kernel 03BA : [0, 1]2 ~ R+;
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. a subset S’ of S+;

. for each pES’ and n G N an associated sub-probability measure 
on Nn;

. some fixed, complete probability space (5~2, .~, P);
~ for each n E N, w G and p E ~‘, a 

:= t > 0) defined on (S~, .~’, P) with 

For m E E E S’, and t > 0 set

N(m, w,p, t) :-

inf ~N > m : Vs E ~0, t], Vn > N~.

DEFINITION 13. - For v E Pn let E P~ denote the unique partition
of N that has ~n -f- l, n -~- 2, ...~ as a component and satisfies = v.

In other words,

LEMMA 14. - Consider a coupled family of coalescents. Suppose that the
following conditions hold.

(a) The collision kernel ~ is symmetric and continuous on ~0,1~2.
(b) For n, m E ~I, p E S’, and t > 0 there is a constant r(n, m, p, t)

such that w, p, t~ > n~  T (n, m, p, t) for all w E ~~ and
limn~~ r( n, m, p, t) = 0 for all fixed m, p, t.

(c) For all p E S’, ] = 0.
Then the following conclusions hold.

(i) For each w E P~ and there is a càdlàg P~-valued process
t > 0) on (SZ, .~’, P) such that

(ii) Let be the law of For each p E S’ the collection of laws

(lhp , w E is that of a ~~ -valued Feller process WP such that
conclusions (i)-(iii) of Theorem 10 hold.

Proof. - By hypothesis (b), for each w E P~ and p E s’ there exists
a set SZ* (w,p) C ~ = 1 such that if cv E 

then N(cv, m, w, p, t)  oo for all m ~ N and all t > 0. Define a càdlàg
~~-valued process t > 0) by declaring that

t) = t), m ~ N, for w E 
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and t) = w for S~* (w, p). It is immediate that part {i) of the
lemma holds, and for N > m we have the bound

Let denote the semigroup of the ( Pn , For

f E set Pf f(w) :_ ~ ~ f (Wp~~’ (t) )~ . We claim that Iff E 
and the function o ~n ) ) o 7rn converges in to Pp f as

n -~ oo. From Lemma 9 it suffices to take f of the form g o 7rm for some
m E N and g E C(Pm). Observe that in this case f o ~n = g o for

n > m. We know from the above that the uniformly bounded sequence of
functions o converges pointwise as and so

it will suffice, by the Arzela-Ascoli theorem, to show that this sequence is
equicontinuous. Suppose that w, v E are such that d(w, v)  
for some N > m so that = Of course,

We have for n > N

and the same bound holds with w replaced by v. Therefore,

l  t),

which establishes the required equicontinuity.
For E and 0  t1  t2 , we have from the uniform

convergence established above that
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Similar expressions hold for the higher order finite dimensional distributions
of > 0), and hence this process is time-homogeneous Markov
with semigroup (Pf)t>o. In order to complete the proof that this process is
Feller, it suffices to show that limt~0 Pf f = f pointwise for all f E C(Poo)
(see [10, Remark after Theorem 1.9.4]). This, however, is immediate from
the right-continuity of the sample paths of > 0).
We now move on to the proof that parts (i)-(iii) of Theorem 10 hold.

Let w be as in the statement of part (i) of Theorem 10. For n’ > n it

is easily verified that is a started at

where We

know from part (i) of the lemma that = 

,p,~’ in Pn ) . On the other hand, for a given starting
state, the law of a Markov chain on a finite state space is weakly continuous
with respect to its transition rates, and so part (i) of Theorem 10 follows
from hypotheses (a) and (c).
To establish part (iii) of Theorem 10, it must be shown that for each

pES’ and w E the process W (s) := > 0, is such that

for every non-negative Borel function f, 
"

Note for M E N that

and

for all v E 

Similar bounds hold for instead of W. By a passage to the
limit as from the corresponding identity for the identity for
W holds for f of the form f (v, v’) = 1( d( v, v’) > 2-~)
with g E x Pm) for some m E N. The identity for f (v, v’) =
h(v, v’)I(d(v, v’) > 2-M) for bounded non-negative Borel h is then
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obtained by a monotone class argument. The identity for general non-
negative Borel f follows by monotone convergence as Finally,
it is immediate from the construction that we have built a process whose

paths are P oo-coalescent evolutions. It follows easily from property (iii)
of Theorem 10 that all coalescences are binary, and so property (ii) of
Theorem 10 also holds. D

The next lemma is a refinement of the previous one. While not required
for the proof of Theorem 10, this lemma will be used in the proof of
Theorem 2. D

LEMMA 15. - Suppose the conditions of Lemma 14 hold for S’ = S~ for
some ,Q > 0, and suppose further that the following conditions hold.

(a) For n, m, t fixed, the function p ~ r(n, m, p, t) from S~ into I~+ is
continuous in the b,~ metric.

(b) For each fixed n E and w G Poo

with the limit taken over q E S).
Then for all E > 0, and w E ’P~

with the limit taken over q E ~~ and v E 
Proof -Fix We have from (25) that if d(w, v)  2-n, so that

03C0n03C9 = , then

Choosing n sufficiently large makes r(n, m, p, t) arbitrarily small. Once
n is fixed, taking q) sufficiently small makes both m, q, t) -

[ and the last term arbitrarily small. D
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The proof of Theorem 10 is completed by the next two lemmas.

LEMMA 16. - Suppose that b) = K(a + b) for some constant K > o.
Then it is possible to construct a coupled family of coalescents satisfying
the conditions (a)-(c) of Lemma 14 for S’ = S+ and conditions (a) and
(b) of Lemma 15 for ~C3 = 0.

Proof. - We need only consider the case K = 1, as the general case
reduces to this case by rescaling time.
The collection of processes n E N, w E will be constructed

simultaneously for all p E S+ by an adaptation of Construction 5. On

some complete probability space (Q, .~’, ~ ) be a a sequence of

independent Poisson random measures on R+ x [0,1], each with intensity
dt @ du, and let = 1,2,..., be a sequence of standard exponential
variables independent of the Hi. For p E S+ define Poisson random

measures on R+ by Hi(E x for E C R+, so
that Bf has intensity pi dt. Let   ... to be the successive

atoms of ~2 1 Bf. Let c~~’~’, 1  I~  #(n, w), denote the components of
listed in increasing order of their least elements. Define a sequence

of random variables (Y~ ’p’~’)~°_o by setting = k if

the atom of at time is an atom of Bf for some i E 

Thus the sequence with 
.

where p(A) :== Let be the probability measure on f~#(n,~,)
with mass :== at k E ~I~(n,w). According to

Proposition 6, the process (II(t; (~,~)~ ~1’2"~), t > 0) is a

(~~(n,w), with starting point the partition of 
into singletons. Define a random partition of by declaring
that i and j belong to the same component of if z and j belong
to respective components and of w such that k and £ belong
to the same component of II (t; (~~ ) ~ ~ i’w} ) . It is clear that

0) is a (Pn, with starting state 
where is p conditioned on Nn.

Let be the subset of N consisting of the vertices of the subtree
of that spans N~(~). Thus v E if and only if v
lies on the unique path from a to b in the tree for some

a, b E where edge directions in the tree are ignored in constructing
the paths. If = then by construction the restrictions to

Nin of (II(t; (~~>~ ~~’~’~) and (II(t; (~~)~ ~N’z"~)
vol. 34. nO 
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are identical for all t > 0, hence so are the restrictions to of (t)
and For 1  1~  ~ (n, w) let be the time of the first atom

of Bf for some z E ~x~’w. For 1  m  n let

By construction, is decreasing as n increases, and Tm’w’p  Tm
which is a. s. finite for every m and p E S+. Now for n > N > m

Therefore,

It is clear that F has property (b) of Lemma 14 and property (a) of
Lemma 15 for /3 = 0. It is also clear that f{; satisfies condition (a) of
Lemma 14 and that hypothesis (c) of Lemma 15 holds for this choice of
p(n). Finally, observe for w E and p, q E S+ that

and it follows that property (b) of Lemma 15 holds for f3 = 0. D

LEMMA 17. - Suppose that ~ satisfies the Lipschitz condition (15). Then it
is possible to construct family of coalescents satisfying conditions (a)-(c) of
Lemma 14 for S’ = Si and conditions (a) and (b) of Lemma 15 with ,C3 = 1.

Proof. - Once again we will treat the case K = 1 and observe that the
general case can be reduced to this by rescaling time. On some complete
probability space ( SZ, .F, P) construct a collection {Dij}i,j~N of independent
Poisson random measures on x ~~, l~ x ~0,1~, each having intensity
Lebesgue measure on I~+ x [0,1] x [0,1]. For p E S+ define a Poisson
random measure Ap on f~+ x [0,1] by setting = x 

for E C fR+ x [0,1], so that Ap has intensity pi dt 0 du.
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For I, J set ~’IJ - Note that if C ~I

are pairwise disjoint, then ~1«~~_h is a collection of independent
Poisson random measures on R+ x [0,1], with having intensity
pIk dt @ du.

For n E E and p E S+, define a cadlag Pn-valued process
0) and stopping times 0 =    ...

as follows, where we abbreviate := and T~ := 
Let W n (o) - 

=the coarsening of obtained by aggregating 
and 

As a transition of W n involving the aggregation of I and J may occur
either due to a point of CIj or due to a point of CJI, it is easily verified
that that for each p E S+ and w E the process W n = is a

started at for the restriction of p to Nn.
It is also easily seen that for each n E N, the process 
with state space Pn x is a time-homogeneous Markov chain whose
transition rates depend only on p and not on w.

We will now derive an upper bound on

Consider first the case that is not a component of Write I for
the component of that is the intersection with of the component of
w that contains {n -+-1 ~. Observe that if J is another component of w, then
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Now, using the notation for the symmetric difference of two sets
A and B,

where we have used the fact that the number of components of w is at
most n and the inequality

for a, b, c > 0. It follows from the Markov property 
that for all p E S+ and w E T~~
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Moreover, by the strong Markov property of ( W n ( - ) , W n+ 1 ( - ) ) , this

inequality holds a fortiori if (n + 1 ~ is a component of For

N > m we have from (26) that for w E and p E S+

It is clear that F has property (b) of Lemma 14 and property (a) of
Lemma 15 for 1. It is also clear that /’) satisfies condition (a) of
Lemma 14 and that hypothesis (c) of Lemma 14 holds for this choice of
p ~n~ . Finally, observe for w E and p, q E S+ that

and it follows that hypothesis (b) of Lemma 15 holds. D

5. CONSTRUCTION OF INFINITE
MEASURE-VALUED COALESCENTS

In this section we prove Theorem 2 by a development of the results of
the previous section. Define a map CLUMP : N x setting

Recall that a map f : I~ --~ N leftward if  k, k E N. Note that the

map CLUMP(k, w) is leftward for every w E Poo. Recall from around
(16) the definition of the subspace ?~ of S for ,~ > 0 and the definition of
the metrics b,~ and A, on S~ . Recall that S+ := {x E S : xk > 
S 1 . - {x E S : xi > 0 ~ , st = s~ n S+, and S~ = S~ rl Note

that S~ is a closed subset of {S~, ~,~~. Define WEIGH : ~~ X S+ - S1
by letting WEIGH(w,p) be the push-forward of p by CLUMP ( ~ , w ) . Thus,
WEIGH(w,p) assigns the p-mass of each component of w to the smallest
element of the component.

LEMMA 18. - For each f3 > 0 the map WEIGH from x {S~ , b~)
into a,~) is continuous.
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Proof. - For p’, p" E S+, w’, w" E P~ we have

 WEIGH(w", p’)) + WEIGH(w", p"))

Observe that if d(w‘, w")  2-tn+~} so that then

Moreover,

WEIGH(w",p") )  b,~ (p’, p") . D

Suppose that p E ?~ and (w(t), t E Q) is a Po-coalescent evolution.
Define an S1-valued function (x ( t ) , t E I) by setting

x(t) = WEIGH(w(t),p). (27)

It is clear that (x(t), t E U) is a leftward S1-coalescent evolution. We
can := CLUMP ( - , w (t) ), s, t E !, s  t, as the associated

tracking maps. We call (x(t), t E U) the S1-coalescent evolution derived
from the proto-galaxy mass distribution p via the P~-coalescent evolution
(w(t), t E 0). Note that if (w(t), t E ~) is binary, then (x(t), t E ~) is

basic. This method of construction of an Sl-coalescent evolution from a

P~-coalescent evolution generalizes the construction in Section 3.1 of a
basic (SK, 03BA)-coalescent from a (Pn, K, p)-coalescent for a finite vector p
of proto-galaxy masses.
A continuous one-sided inverse for the map WEIGH can be defined as

follows. Given x E write ~T~ (x) ~ ~ 1 for the ordered list of the elements
of N that are assigned positive mass by x. That is,

Define E ~S+ as follows:

where the second case occurs only if x has finite support. Define E Poo
by declaring that z if and only if  i ~ = 
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 j~. Note that = x. The following result is

elementary. 
’

LEMMA 19. - For each ,C3 > 0 the (~(x), 8(x)) from 
into (S~ , ~,~) x continuous.

We turn now to the proof of the basic case of Theorem 2. Let
> 0), w E ~~ , be the collection of processes

whose existence is guaranteed by either Lemma 16 or Lemma 17. We now
write W(t; p, w) instead of Wp~2" (t) for typographical convenience. Given
x e ~~, define a cadlag (Sa, 0,~)-valued process (X (t; x), t > 0) by setting

Note that X (t; x) takes values in the set  8 (x) ~.
Write QX for the law of (X (t; x), t > 0).

For n E N let p~ be the finite set of partitions w with the property that
n + 1 -w n + 2 ~w ~ ~ . Note that if x E s~ n SK, then 9(jf) E ~~
for some n. It is clear that for such an x the process (X(t; x) , t > 0) is a

basic 03BA)-coalescent. It follows by Lemmas 18, 19, 14, 15 and the

compactness of P~ that for x E > 0 and E > 0,

Note for each P ~ S+03B2 that is a compact
subset of (S~, 0,~ ) . As the set E T~~ ~ is dense in

w E it follows from (29) that x E 

w E is the family of laws of a Feller process on 
w E Finally, as S~ = w E we have

that (Qx, x E S~) is the family of laws of a Hunt process on (S~, 0,~). We
have already established (ii). Claim (iv) is immediate from (29). Claims (i)
and (iii) follow from parts (iii) and (iv) of Theorem 10. 

°

The proof of Theorem 2 in the shunted and ranked cases is similar. Just
change the definition of X (t; x) to

SHUNT(WEIGH(W(t; 8(x)), 

and

RANK(WEIGH(W(t; 8(x)), 

respectively, and use the fact that SHUNT is continuous from (S~, ~a) to
(S~ , ~,~ ), and RANK is continuous from (S~ , 0;~ ) to (S~ , b,~ ) . O
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6. THE INFINITE ADDITIVE COALESCENT

We present in this section a number of results for infinite additive

coalescent processes. We record first the following explicit construction
of these processes, which follows easily from Proposition 6, Theorem 2,
and Theorem 10.

COROLLARY 20. - In the notation of Construction 5, suppose that p
is a probability distribution on N with pi > 0 for all i E Let

-- (Yi)~j=0 (~03C3)03C3~N). Then (II(t), t > 0) is a +,p)-
coalescent starting from the partition that consists of all singletons. The
process (WEIGH(II(t), p), t > 0) is a basic additive coalescent with

initial state p, and the processes (SHUNT(WEIGH(II(t),pjj, t > 0) and
(RANK(WEIGH(II(t),p)j, t > 0) are shunted and ranked additive coalescents
with starting states p and RANK(p) respectively.

6.1 Asymptotics for uniform initial condition

Consider now a shunted (X* (t), t > 0) started with
the uniform or monodisperse initial condition un defined by n equal masses
of size l/n labeled by Given ~X* (t) = k let Xl (t), ... , 
denote the sizes of the k non-zero components of X*(t) presented in
an exchangeable random order. It is known [33],. and follows from

Proposition 4, that there is the equality of joint distributions

where the random variables Yi are independent and identically distributed
with the Borel t 1 ) distribution

We may suppose that the process (X* (t), t > 0) has been constructed
in the manner of Section 3.1 from an additive Pn-coalescent process
(Wt, t > 0) with proto-galaxy masses pi = - ~ - = pn = 1/n. Due to
exchangeability of Wt, the components of X* (t) are in size-biased random
order [15, 34]. It follows from the representation (30), and [2, Lemmas
11 and 12] that for each t > 0 and s > 0, as and k varies with
n in such a way that 
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where ~ denotes convergence in distribution of (S*, 60)-valued random
elements and on the right-hand side (Hi, i > 1) is a size-biased random

permutation of the points of a Poisson point process on ] 0, oo [ with intensity
measure and E := Note that E has a stable(1/2)
density. Let II ( s) denote the probability distribution on S appearing as
the limit distribution in (32). A formula for the joint density of the first
n components of a random sequence ( Tl1 ( s ) , h2 ( s ) , ... ) with distribution
Hs can be read from [31, Theorem 2.1]. Let V m(s) := Y(s), so
V1(s) = 1 and Vm (s) = Vm (s) - for m > l. As shown in [8], a
sequence ( Y?-,-L ( s ) , m > 1) with distribution II ( s ) is generated by the formula

where Z1, Z2, ... is a sequence of independent standard normal variables.
Here Z; has the same distribution as 1/~. Let II 1 (s) denote the push-
forward of II( s) by the ranking map from S* to S 1. Because the ranking
map is continuous [15], the convergence in distribution (32) implies a
corresponding result for a ranked additive SK-coalescent X~(t) instead of

X* (t), with limit II 1 (s). The finite dimensional distributions of II 1 (s) can
be described explicitly [30, 37], but they are much more complicated than
those of II(s).

PROPOSITION 21. - Let (X* (t), t > 0) be a shunted additive SK-coalescent
with initial state X* (0) = u. Let hn := 2 log n. For each r ~ I~, as the

distribution of X* (hn + r) on (S, bo) converges to IIe2r, and the distribution
+ r) converges to 

’

Proof - From the binomial (n - 1, e-t ) distribution of ~X* (t) - 1 given
X* (0) = u, we know that for each real number r,

and the variance of ~X* (hn + r) given X* (0) = un is of the same order
of magnitude. It follows that for each fixed r, as n-+oo the random
variable ~X* (hn + given X* (0) = un converges in probability to
the constant e-~’, and hence n/(~X* (hn -I-r))2 given X* (0) = un converges
in probability to the constant e2r. The proposition now follows from (32)
and continuity of the ranking map. D
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Suppose now that

is a shunted additive SK-coalescent started at time -hn with

Proposition 21 combined with Theorem 2 shows that as
the finite dimensional distributions of X"~ converge to those of a

limiting ~S* -coalescent process

such that for each real r the distribution of Xoo (r) on S* is II ( e2r). Thus
X° actually takes values in S+. Moreover, there is weak convergence on
the appropriate Skorohod path space, and the limiting process is a strong-
Markov process with the shunted additive coalescent semigroup (Q; , t > 0)
of transition operators. See [8] for another construction of X° based on
the combinatorial representation of the additive Pn-coalescent in terms of
random trees [33], and Aldous’s continuum random tree [5]. That approach
yields various distributional ’ properties of the limit process, but not the
regularity properties of X°° such as the strong-Markov property obtained
here. The family of probability measures II(e2r) define an entrance law
for the semigroup (Q~ ), that is

There are corresponding results for the ranked rather than shunted additive
coalescent. See also [19] for some recent developments.

6.2 Tail thinning

Let (X*(t), t > 0) be a shunted additive S-coalescent. Let 
~°° n Xi (t). Suppose that X* (0) has distribution on S for some

c > 0, for as in Proposition 21. From the representation (33) of a
random element with distribution II ( s ), the consequence of the law of large
numbers that ~~ i n almost surely, and the consequence of (37)
that X* (t) has distribution on S* for each t > 0, we have for
each t > 0 that

where an ~ bn means that Let = E~i=n Xl(t) where
(Xl(t), t > 0) is a ranked additive S-coalescent. For with
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distribution on the distribution of X1(t) is It

follows [22, (68)] that

We conjecture that if the initial state of a shunted additve S-coalescent

(X~‘ (t), t > 0) (resp. a ranked additive S-coalescent (Xl(t), t > 0)) is

such that (38) (resp. (39)) holds for t = 0, then (38) (resp. (39)) holds
for each t > 0. As a step towards understanding how tails of a mass

distribution are affected by an additive coalescent process, this section

presents some results related to (38) and (39) for the basic and shunted
additive S-coalescents.

The following simple lemma is no doubt present in the differential

equations literature, but we have been unable to find a reference.

LEMMA 22. - Suppose that {fn}n~N is a sequence of Borel functions
mapping I~+ into i~+ that is uniformly bounded on compacts and satisfies

where dn(t) converges to 0 uniformly on compacts as n ~ 0. Then fn (t)
converges to bect uniformly on compacts as n ~ oo.

Proof. - Observe for m, n E I~ that

By Gronwall’s lemma,

and so there exists a function f such that fn converges to f uniformly on
compacts as ?T- 2014~ oo. Clearly,

and hence f ~t) = D

Recall that Qx governs the basic additive coalescent with initial state x,
as constructed in Theorem 2.
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LEMMA 23. - For x E 81, k E N and t > 0,

Proof. - It suffices by part (iv) of Theorem 2 to consider the case when
x 

Put H = ~ ( z, j ) E I~ x N : i  j ~ and a collection

of independent Poisson random measures on [0, 1] x (~+ with intensity
Lebesgue measure on [0,1] x 

Define Gk : S x H x [0,1] -~ E N, by

It is elementary to construct a cadlag S1 n SK-valued solution X to the
family of SDEs

and X will have law We may therefore suppose that X has been

constructed as a solution to (40).

Applying the "Ito formula" for stochastic integrals against an

(uncompensated) Poisson random measure (see, for example, [21,
Theorem 11.5.1]) and taking expectations, we have that
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Observe that

and the result follows from Gronwall’s lemma. D

For xES and k e N let _ ~ °° ~ ~i .
THEOREM 24. - Suppose that x E s 1 satisfies each of the following three

conditions:

Then, for all T > 0 and E > 0,

REMARK 25. - The above conditions on x = are satisfied if is

regularly varying of order - a for some 0: > 1.

Proof - We claim that under QY for any y E Sl, the process Xk has
the semimartingale decomposition

where Mk is a martingale. As in the proof of Lemma 23, when y has finite
support it is elementary to construct a solution to (40) with starting point y
and the solution has law It is then immediate that (42) holds when y is

finitely supported. The general case follows from part (iv) of Theorem 2.
Observe that under QX, for s > 0 and £ > l~,
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On the other hand, as

it follows that

In order to prove the theorem it suffices, by Lemma 22, Lemma 23, (43),
. 

(44), and assumption (c), to show that for all T > 0 and E > 0

By standard facts about the "angle-brackets" of stochastic integrals against
compensated Poisson random measures (see, for example, [21, §11.3]) we
have for finitely supported y that

It follows from part (iv) of Theorem 2 that (46) holds for all y. Thus,
~. 1 ~~
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Hence, by Lemma 23 and assumptions (b) and (c),

and (45) holds by the L2 maximal inequality. D

Set

PROPOSITION 26. - Suppose that x E sl is such that

Then, for all T > 0 and E > 0,

linx ~x~ sup > E~ = 0
k-o 

and

Proof. - The claim for L clearly implies the claim for A, so it suffices
to prove the former.

Arguing as in the proof of Theorem 24, we have the semimartingale
decomposition

where Mk is a martingale. Observe that

Vol. 34, n° 3-1998.



378 S. N. EVANS AND J. PITMAN

The result will therefore follow from Lemma 22 if we can show that for

all T > 0 and 6 > 0,

However, an "angle brackets" calculation similar to the one in the proof
of Theorem 24 gives that

and an application of the L2 maximal inequality completes the proof. D

COROLLARY 27. - Suppose that x E sl satisfies the conditions of
Theorem 24, the sequence is regularly varying of order -~y, ~y ~ 0,
and

Then, for all T > 0 and E > 0,

Thus, if x* = SHUNT(x~,

Proof - Note that

by definition, and so

The result now follows immediately from Theorem 24, Proposition 26, and
the properties of regularly varying sequences. D

Remark 28. - In view of Remark 25, if the sequence is regularly
varying of order -a, a > 1, then for all T > 0 and E > 0,
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7. EXCHANGEABLE P~-COALESCENTS

Call a Poo-valued process (Wt, t E ~) exchangeable, if the distribution
of each of the processes (7rn o Wt, t E ) is invariant under the action of
permutations of on the space Pn of partitions of An example is
provided by Kingman’s P~-coalescent (Wt, t > 0) described in Example 7.
If (Wt, t E I) is an exchangeable P~-valued process then each of the
random partitions Wt is an exchangeable random partition of N, as studied
in [23, 24, 4, 32]. Let 2~ denote the set of all subsets of N. Define a map
GAL : N x 2~ as follows. If i is the least element of some component
of v, let GAL(2, v) be that component; otherwise let GAL(i, v) be the empty
set. Thinking of the components of v as representing galaxies, call GAL( i, v )
the galaxy labeled i in the partition v. Say that a partition v E 7~~ has
frequencies if the asymptotic frequency

exists for all i. And say that v has proper frequencies if also

The following lemma is elementary: .

LEMMA 29. - Suppose that v has proper frequencies and that w is a

coarsening of v. Then w has proper frequencies given by the formula

Kingman [23, 24] showed that if W is an exchangeable random partition
of N, then W has frequencies. Combined with the above lemma this
implies the following proposition:

PROPOSITION 30. - Suppose that (Wt, t E d) is an exchangeable P~-
coalescent process such that Wt has proper frequencies almost surely for
each t E ~. Then Wt has proper frequencies for all t E ~ almost surely. Let

Then the process (X(t), t E 0) is a leftward S-coalescent process with
tracking functions defined by = j if FREQ(i, > ~ and

GAL(2, C GAL(j, Wt).
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The transformation (50) is an analog of the transformation (27) applied
in Section 5, with masses defined by asymptotic frequencies instead of
an arbitrary distribution p. Proposition 30 shows how to transform an
exchangeable P~-coalescent with proper frequencies into an S-coalescent.
The following proposition shows that modulo labeling every S-coalescent
has the same distribution as one that has been constructed by this

transformation.

PROPOSITION 31. - Given an S-coalescent process (X(t), t E ~~, there

exists an exchangeable P~-coalescent process (Wt, t E I) such that

where =d denotes equality of finite-dimensional distributions.

Proof. - Since the distribution of a P~-coalescent is determined by its
sequence of restrictions to Pn, by application of the Kolmogorov extension
theorem it suffices to prove the existence for each s e of an exchangeable
P~-coalescent ( Wt , t E U , t > s ) such that (51) holds with t restricted to
t E  t! with t > s. Such a Poo-coalescent can be constructed as follows.
First enlarge the probability space on which (X(t), t E ) is defined

to construct a sequence Io, I1, ... of N-valued random variables which
conditionally given (X(t), t E ft) are independent with identical distribution
X ( s ) . For t E Q with t > s let Wt be the partition of N generated by
the random equivalence relation iff where

W s,t is the tracking function associated with X. Then, by construction
of Wt and the law of large numbers for the sequence Io , I1, ..., the

process exchangeable P~-coalescent such that
RANK(X(t)) = > 1) almost surely for each t E ~ I with
t > s. D

Let ISBP denote the set of distributions of S-valued random elements
which are invariant under the operation of size-biased random permutation.
A number of characterizations of ISBP are known [34], one of which is that
II E ISBP if and only if II is the distribution of SHUNT(FREQ(i, W), i > 1)
for some exchangeable random partition W of N with proper frequencies.
As an application of the above ideas, there is the following proposition,
which generalizes some of the observations regarding the shunted additive
coalescent that were made in Section 6.1.

PROPOSITION 32. - Let denote the semigroup of a shunted (Sa, 03BA)-
coalescent as in Theorem 2. Let II be a probabil ity distribution on S*03B2. If
n E ISBP then 03A0Q*t E ISBP for each t > 0.
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See also [36] where the ideas of this section are applied to characterize
the entrance boundary of the Sl-coalescent derived from the P oo-valued
A-coalescent mentioned in Example 8.

8. OPEN PROBLEMS

For each of the shunted and ranked S-coalescent semigroups discussed
in this paper, there is the problem of characterizing the possible entrance
laws for a Markov process with the given semigroup and time parameter
set 0 =] - oo, oo [. See Aldous and Limic [7] and Aldous [6] for a treatment
of this problem for the multiplicative coalescent, and related questions.
From Section 6.1 we have existence of a non-trivial entrance law for a
shunted or ranked additive coalescent with 0 =] - It can be shown

[8, 3] that there are other non-trivial extreme entrance laws in this case
which are not just shifts of this entrance law, and an explicit description
of all extreme entrance laws can be given. For an adequate discussion of
the entrance boundary problem for more general collision kernel {B that
satisfy the Lipschitz condition (15) it would seem necessary to first enlarge
the statespaces of the shunted and ranked processes to all of S* and 
rather than the statespaces Si and sf required in Theorem 2. Much remains
to be understood about how the evolution and asymptotic behavior of a
coalescent process are affected by initial conditions.
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