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ABSTRACT. - Let (Pt)t>o be the transition semigroup of a right Markov
process, and let m be a conservative (Pt)-invariant measure. Let f and g be
elements of with g > 0. We show that, with the exception of an m-
polar set of starting points ~r, the ratio f o Ps!(x) ds / f o Psg(x) ds converges
as t ~ +00, and we identify the limit as a ratio of conditional expectations
with respect to the appropriate invariant a-algebra. This improves upon
earlier work of M. Fukushima and M.G. Shur, in which the exceptional set
was shown to be m-semipolar. The proof is based on Neveu’s presentation
of the Chacon-Omstein filling scheme, adapted to continuous time. The
method yields, as a by-product, a local limit theorem for the ratio of the
"characteristics" of two continuous additive functionals, extending a result
of G. Mokobodzki. © Elsevier, Paris

Key words and phrases: Chacon-Ornstein theorem, filling scheme, ratio ergodic theorem,
continuous additive functional, maximal inequality, m-polar, reduite.

RESUME. - Soit Pt, t > 0, le semi-groupe de transition d’un processus
de Markov droit avec espace d’états E, et soit m une mesure conservative
(donc (Pt)-invariante) sur E. Soit f et g > 0 des fonctions m-intégrable sur
E. Nous montrons que, en dehors d’un ensemble m-polaire des points de
depart x, le rapport J; converge comme t ~~ +00,
et nous identifier la limite comme le rapport des esperances conditionnel (par
rapport a une tribu invariante approprie). Ceci s’ ameliore sur les premiers
travaux de M. Fukushima et M.G. Shur, dans lequel l’ ensemble exceptionnel
s’ est avere m-semi-polaire. La demonstration est basee sur la presentation
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386 P. J. FITZSIMMONS

de Neveu de le schema de remplissage de Chacon-Ornstein, adaptee au
temps continu. La methode donne, comme sous-produit, un theoreme de
limite locale pour le rapport des « caracteristiques » de deux functionals
additifs continus, etendant un resultat de G. Mokobodzki. © Elsevier, Paris

1. INTRODUCTION

Let X = (Xt, PX) be a right Markov process with state space E and
transition semigroup (Pt)t>o. Let m be a conservative excessive measure
of X ; in particular, m is a-finite and invariant : mPt = m for all t > 0.
Recall that a Borel set B is m-polar provided  oo) = 0, where
TB := inf{t > 0 : Xt E B ~ is the hitting time of B by X. We shall
prove the following quasi-sure form of the celebrated Chacon-Ornstein
ratio ergodic theorem [9]. Since m is a-finite there is a bounded Borel

function q > 0 on E such that m(q) = 1; let  denote the probability
measure q . m.

THEOREM 1.1. - If f and g > 0 are Borel functions in Ll(m), then there
is an m-polar Borel set B ~ E such that

(The invariant a-algebra I is defined in section 3. )
As we shall see, if f. E Ll (m) then there is an m-polar set B f such that

(i)  oo) = 0 for all x E and (ii) ~ ~ is

real-valued and finely continuous on E B B f for all t > 0.
The original ratio ergodic theorem of Chacon and Ornstein is a discrete-

time result to the effect that P~ f / P~g converges m-a.e on
~~~ o pkg > 0~, whenever P is a positivity preserving linear contraction
operating in Ll(m). It is a straightforward matter to apply the Chacon-
Omstein theorem in the present context to deduce the weaker form of (1.2)
in which the exceptional set B is m-null; c f. [5; Thm. 11.1]. Refinements of
this basic result, wherein it is shown that the exceptional set B is at worst m-
semipolar (i.e., E B for uncountably many t > 0) = 0) have been
discovered by Fukushima [20] and Shur [39, 40] under duality hypotheses,
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387QUASI-SURE RATIO ERGODIC THEOREM

and under an absolute continuity hypothesis [40; Thm. 3, p. 705]; see also
[12]. (Actually, Fukushima shows the exceptional set to be m-polar under
the assumption that semipolar sets are m-polar, an assumption which is
satisfied if (Pt) is symmetric with respect to m, or nearly so: [17; (4.13)].)
In these works the ratio ergodic theorem is deduced from a continuous-time
version of Brunel’s maximal inequality [8, 2], which also allows for an

explicit description of the limit as in (1.2). See [10] for a description of
the limit in the original Chacon-Ornstein theorem, and [27] for a proof of
the identification via Brunel’s inequality.
Neveu [34] has shown how an amplified form of the filling scheme of

Chacon and Ornstein leads to a rapid proof of the ratio ergodic theorem in
discrete time. Inspired by this work, and that of Rost [37] and Meyer [28]
on the filling-scheme in continuous time, we show how Neveu’s approach
can be adapted to continuous time to prove Theorem (1.1). It is a testament
to Neveu’s insight that this approach leads to an m-polar exceptional set
with relative ease. Moreover, there is no need (as in [20, 39]) to assume
that the functions f and g appearing in Theorem (1.1) are bounded; the
relaxation of this hypothesis was achieved in [40] only by means of fairly
delicate arguments. As a bonus, we deduce from (1.1) a sharp form of
Brunel’s inequality (Theorem (4.11)), improving (in our specific context)
on the analogous results found in [3, 14, 16, 20, 39, 40].

After developing the basic properties of the continuous-time filling
scheme in section 2, we briefly discuss the invariant a-algebra in section 3.
Section 4 is devoted to the proof of Theorem (1.1). Further applications of
the filling scheme appear in section 5 (where we present a generalization
of Mokobodzki’s local limit theorem) and in section 6 (where we present
the "abelian" form of the ratio ergodic theorem).

In the remainder of this section we describe the context in which (1.1)
will be proved and we establish some basic notation. If (F, .~’, ~c) is a

measure space, then (resp. p0) denotes the class of bounded real-
valued (resp. [0, oo]-valued) 0-measurable functions on F. For f e p.~’
we use to denote the integral IF f similarly, if D E .~’ then

D) denotes ID f We write 0* for the universal completion
of .F; that is, F* = where ~~ is the v-completion of F and
the intersection runs over all finite measures on (F, .~’). If (E, ~) is a

second measurable space and K = K(x, dy) is a kernel from (F, F)
to (E, ~) (i.e., F 9 x - K(x, A) is 0-measurable for each A E E
and K(x, -) is a measure on (E, ~) for each ~ E F), then denotes
the measure A ~ and K f the 0-measurable function
~ ‘~ f E 
Vol. 34, n° 3-1998.



388 P. J. FITZSIMMONS

Throughout the paper, X = (SZ, ~’, .~’t, Xt, 8t, P~ ) will be the canonical
realization of a Borel right Markov process with Lusin state space (E, E);
see [23] or [38]. Briefly, this means that (i) E is homeomorphic to a Borel
subset of some compact metric space and E is the Borel a-algebra on E,
(ii) under P~ (the law of X started at x E E) the E-valued process t ~ Xt
is a right-continuous strong Markov process, (iii) the transition operators
Ptf(x) := satisfy Pt(bE) c b~..

Since our concern is with "recurrent" processes, we assume throughout
that X is honest, in the sense that Ptl - 1 for all t > 0.

The sample space H is the set of all right-continuous E-valued paths
cJ : [0, E, and Xt (cv) = is the coordinate process. The shift

operators 8t, t > 0, are defined on 0 by = 

The resolvent operators associated with (Pt) will be denoted U°~ : -

e-at Pt dt, a > 0, and we write U instead of U° for the potential
kernel dt. In addition we introduce the notation Ut for the partial
potential operator J; Ps ds.
Upon occasion we shall need to consider sets more general than Borel

sets. Recall that, for a > 0, a function f E pE* is a-excessive provided
t t-~ is decreasing and right-continuous for each x E E. We
write Ee for the a-algebra on E generated by the a-excessive functions
(a > 0), and note [38; (8.6)] that c b~e and Ut(bEe) C Since

the process t ’2014~ f (Xt ) is optional whenever f is a-excessive, the hitting
time TB := inf ~t > 0 : Xt E B~ of any B E Ee is a stopping time.
A measure m on (E, E) is excessive for X provided it is a-finite and

mPt  m for all t > 0. It is known that since X is a right process, we have
limt~o+ = m(f) for all f E pE, for any excessive measure m.

Let m be an excessive measure. Then (Pt) respects m-classes in the sense
that if f = 0, m-a.e., then Pt f = 0, m-a.e. for all t > 0. By the triangle
inequality, the restriction of (Pt)t>o to bE n extends uniquely to a
contraction semigroup of linear operators in The "uniqueness of
charges" property [24; (2.12)] enjoyed by any right process ensures that
this semigroup is strongly continuous.

2. THE FILLING SCHEME IN CONTINUOUS TIME

In this section we develop the continuous-time form of Neveu’s

presentation [34] of the filling scheme. Our point of departure is Meyer’s
observation [27] that the filling scheme (in discrete or continuous time) is

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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equivalent to a construction involving space-time reduites. In this way we
are able to avoid the time-discretization arguments that appear to be the
source of the m-semipolar exceptional set in earlier forms of (1.1). The
reader familiar with [27] will note we use the backward space-time process,
while Meyer used the forward space-time process. This is quite natural
since our construction is "dual" to his in the obvious sense.

Let X denote the backward space-time process associated with X :

where A is a cemetery state adjoined to as an isolated point.
(By convention, functions and measures defined on Ex]0, oo[ are taken to
vanish at A.) We realize X on the product space oo[ endowed with
the product measures P := P~ @ Er, where Er denotes the unit point
mass at r. It is well known [38; pp. 86-88] that X is a transient Borel right
Markov process with transition semigroup

where (here and in the sequel) we use the notational convention hu(x) :=
h(x, u). The potential kernel of X is given by

Notice that if f E p~*, then

Let us now fix f, g e pP such that Ut( f + g)(x)  -I-oo for all t > 0

and all x E E. Let G denote the least X-supermedian majorant of the
(finite) space-time potential U((g - f ) 0 1); see [11; XII.2]. Then G is
X-excessive and strongly dominated by the finite potential U(g ~ 1), in the
sense that the function !7(~ 0 1) - G is X-excessive. Consequently, there
exists g : Ex]0, (0, oo~, measurable over the universal completion of
E ~ B]o,oo[, such that

The asserted strong domination means that we can take 9 to be dominated
by g @ 1. Moreover we can (and do) assume that 9 is supported in the set
~ ~ = U ( (g - f ) @ 1 ~ ~ . See [29] or [ 11; Thm. 31, p. 17].

Vol. 34, n° 3-1998.
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Define

and notice that both F and H are non-negative functions. Then for all
t > 0 and x e E,

The ordered pair (F, G) embodies the continuous-time filling scheme
associated with the ordered pair ( f , 9 )-compare (2.1)-(2.2) to [34; (5),
p. 369]. In the sequel we shall refer to (F, G) as the filling scheme for
(.~~ ~).
Each of the functions U(I ® 1 ), U(g ® 1 ), G, H is excessive for X ;

in particular, these functions are X-finely continuous. Consequently, F is
also X-finely continuous. In the following proposition we record several
additional properties of F.

PROPOSITION 2.4. - (a) t H t) is monotone increasing and continuous
for each fixed x E E.

(b) Define

and let Dz = inf{t > 0 : Xt E Z} denote the entry time of Z. Then

In particular, Z is finely closed.

Proof - (a) By the theory of optimal stopping ([13] or [15; Chap. II]),
we have

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques
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where T ranges over the stopping times of X , .- fo ~T ( f - g)
(X~ (w) ) ds, and

Since (2.7) follows easily from facts about F already in evidence, we
provide a quick proof. The process

is a uniformly integrable right-continuous Px,r-martingale with initial value
= F(x, r). Thus, for any X stopping time T,

Moreover, the inequality in (2.8) is an equality for the X-stopping time
T (w, r) := T(r)(w) because of (2.3). This proves (2.7).

For t > 0 set .~’t : - ~ ~ X s : o  s  t ~ , and for r > 0 let T~. denote the
class of stopping times S such that {8  .~’r whenever t > r.
If T is a stopping time of X, then for fixed (x, r) there exists such

that P~’T (S ; T) = 0, where S(w, r) :_ ,S’(w). Thus, by (2.7),

where := But 7;. C T~ for any s > r, so

which establishes the monotonicity of F(., x). Next we note that

for all 0  r  s, where Fo := 0; cf. [37; Prop. 4], [28; Prop. 11]. The
second inequality in (2.9) follows immediately from the definitions. To see
the first we use (2.7) and the obvious relation

Vol. 34, n° 3-1998.



392 P. J. FITZSIMMONS

Therefore,

as claimed. Now = fr Pvf(x) dv - 0 as s - r --~ 0, by
dominated convergence, so (2.9) ensures the continuity of t ’-~ Ft {x) on
[0, oo ~.

(b) Notice that T(t) := inf{ s > 0 : = 0~ n t  Dz n t.
Therefore (2.6) follows from the second equality in (2.7). From (2.6) and the
inequality Dz  Tz we deduce that if x E Z’~ : := {x : PX(Tz = 0) = 1 }
(the regular points for Z) then x E Z. That is, Z is finely closed. Q

3. INVARIANT SETS AND FUNCTIONS

We now fix an excessive measure m of X. Recall that a set B E ~e is

m-polar provided  oo) = 0. A statement S(x) holding for each x
outside an m-polar subset of E is said to hold m-quasi-everywhere (m-q.e.).

In this section and the next we assume that m is conservative (m E Con)
in the sense that the only potential vU dominated by m is the zero potential.
A function h E is m-invariant provided Pth = h for all t > 0,

m-q.e. It is easy to check that if ho E U satisfies Ptho = ho,
m-a.e. for each t > 0, then h := U1 ho is an m-invariant function equal
to ho, m-a.e.

In the following lemma we record some well-known consequences of the
hypothesis m E Con. For proofs see [7] and [24; pp. 9-15].

LEMMA 3.1.

(a) If h is excessive, then = h(x), Vt > 0) = 1 for m-q.e.
x E E.

(b) If B E ~e, then cpB E ~0, l~, m-q.e., where cp${x) :-  oo).
, (c) If B E ~e, then  LB  oo) = 0, where LB := sup~t >

. 0 : Xt E B}.
(d) If f E then m-q. e.

In particular, (3.1)(a) implies that any excessive function of X is m-

invariant.

Let ?-~ denote the class of all bounded m-invariant functions, and define

Z : _ ~ B E ~ e : lB E ~C ~ . Let I’ denote the class of elements 
of the form

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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where f E n N E ~e is m-polar, and 4N denotes symmetric
difference.

LEMMA 3.2. - (a) Z’ _ T. (b) I = ~ ( ~l ) and H = bI.

Proof. - (a) If B E I, then UIB = (-~oo) ~ IB, m-q.e., so B e I’.
Conversely, suppose B = (Uf = E I’, and define F :==

{U f = Then 1 F is a supermedian function; i. e. , Pt1F  IF for
all t > 0. Moreover, (3.1)(a) implies that, for m-q.e. x, if +oo,
then +oo for all s > 0, for such x we must have

= 1 for all t > 0. It follows that 1 F E H, and then that B E I.

(b) Property (3.1)(a) implies that H is a vector lattice contained in bEe,
and that H contains the constant functions. It is also clear that H is closed

under bounded monotone convergence. Thus I is a a-algebra. Moreover,

so =i limn hn E H as well. It follows c I. The reverse

inclusion I C a(H) is trivial. Of course, I _ implies H C bI; the
reverse inclusion follows by a routine application of the monotone class
theorem. D

From [24; (4.17)] we know that, because m E Con, if B e ?~ then the
balayage of m on B, RB m, is a conservative excessive measure, and is
related to m by

LEMMA 3.3. - Given A E we have (writing for inclusion modulo
m-polars)

Proof. - (a) Suppose that A B = l~ is not m-polar. Then there is
a stopping time T with

since  1} =m = 0~ by (3.1)(b). Thus, by the strong Markov
property,

resulting in a contradiction because of (3.1)(c).
(b) Note that A Cy~ B implies that pA  CPB, m-q.e., and = l~

is m-polar because j6 e jT. D

Vol. 34, n° 3-1998.
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4. PROOF OF THEOREM (1.1)

Before embarking on the proof of Theorem (1.1) we prepare the way
with a lemma. Let ,C1 (m) denote the class of m-measurable real-valued
functions such that IE If | dm  +00. A set A E Ee is absorbing provided

 oo) = 0 for all x E A. The restriction of X to an absorbing
set A E Ee is a right process with state space A, and a Borel right process
provided A e E. Following [22] we say that N E Ee is m-inessential

provided N is m-polar and E B N is absorbing. From [22; (6.12)] we
know that if No E Ee is m-polar, then there exists an m-inessential Borel
set N D No.
The following result is valid for arbitrary excessive measures.

LEMMA 4.1. - Let m be an excessive measure and let f be an element of
,C~ (m). Then there exists fo E pE with f) = 0 and an m-inessential
set B f such that (i) {x : some t > 0~ c Bj, (ii)
Utfo(x)  +oo for all t > 0 and x E E B (iii) E B B f ~ x ~ Utfo(x)
is finely continuous for each t > 0, (iv) t H is continuous for
each x E E B By.

Proof. - Fix m and f as in the statement of the lemma, and choose
functions f o and f l in pE such that f o  ~  A and m(fo  = 0.

Clearly fl E ,Cl (m), so U1 f l E as well. It follows that U1 fl
is finite m-a.e., hence m-q.e. (by the proof of [6; II(3.5)]). Let B1 E E
be an m-inessential set off which is finite. Now the 1-excessive

function fa) vanishes m-a.e. and so the set B2 : - ~ U 1 ( ~1 - fo ) 7~
~~ E E is m-inessential. Since Ut(fl - ~o)  fo), we have
Ut f(x) = Ut fo(x)  for all t > 0 whenever x E E B (B1 U B2).
The set B f :== B1 U B2 is an m-inessential Borel set and it is easy to

verify properties (i), (ii), and (iv) in the statement of the lemma. As for
property (iii), note that if t > 0 and x E E B B f, then s ~ 
is the Px-optional projection of the (Px-a.s.) right-continuous process
s )-~ Thus s ~--~ is right continuous, so

Ut f o is finely continuous on E B B f by [6; II(4.8)]. D

Proof of Theorem 1.1. - It is enough to show that if f , g E pE fl 
then

where /~ = q . m and q is a strictly positive bounded Borel function with
= 1. (The substitution of {U 9 = for {U 9 > ~~ is justified by

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques
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(3.1)(d).) Indeed, (4.2) and its counterpart when f and g exchange roles
establishes (1.2) m-q.e. on (U f = Ug = +oo}, while (1.2) is trivial on

 +oo = Ug}.
In what follows we shall write / and 9 for the conditional expectations

and respectively.
In view of Lemma (4.1), at the cost of working with the restriction of

X to E B (By U we can (and do) assume in the sequel that Ut f and
Utg enjoy the smoothness properties listed in the statement of the lemma
on all of E.

To prove (4.2) it suffices to show that for any real b > 0

This assertion is an immediate consequence of the following two lemmas.
Fix b > 0 and let (F, G) denote the filling scheme for ( f, bg). Recall
from section 2 the finely closed set Z := f:~ e E : = 0~, where
F~(x~ :=I 

LEMMA 4.4. - We have  b, rn-q.e. on the set

~f 

Proof - Define B := {/  6 g} fl = +oo} n = 1~ E T.
By (2.1 ) and (2.2),

provided Ut g ( x ) > 0. Thus the assertion will follow once we show that
F~  +0oo, m-q.e. on B. To this end define v(x) := Px DZ0 f(Xt) dt, so
that F~  v (by (2.6)), and v(x) = px TZ0 f (Xt) dt Z. We are

going to show that {v = is ?~*-polar, where m* is the conservative
excessive measure defined by m* :== RBm = m. It suffices to show

that Pm (TK  oo ) = 0 for every compact K c {v = Fix such

a compact set K.

The finely open set E B Z can be viewed as the state space of the

subprocess (X, Tz) (X killed at time Tz), for which the restriction of m*
to E B Z is a dissipative excessive measure. Since f ~ Ll(m), it follows
that v (which is the potential of f relative to (X, Tz)) is finite m* -a.e.

Therefore we can choose a strictly positive function f E bE such that
rrL* (.~ ~ v)  +00. Then by the strong Markov property and the terminal

Vol. 34, n° 3-1998.
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time property of Tz (u  Tz implies Tz = u + Tz o 8u ),

which leads to a contradiction unless (TK  Tz) = 0 because
XTK {v = a.s. on ~Tx  oo}.

Since (TK = Tz) = 0, it only remains to show that (Tz 
Tx  oo) = 0. To this end let F denote the set of strictly positive left
endpoints of the excursions of X from Z. By [19; (6.6), (6.10)]

If   oo, then there is a unique s e such that

s   s + and for this s we have >

f(Xt) by the terminal time property of Tz. Consequently,

which contradicts (4.5) unless (Tz  TK  oo) = 0. D

LEMMA 4.6. - The  b ~ g~ n  1 ~ is m-polar.
Proof - Recall from (3.1)(b) that = 0, m-q.e.  1 ~ . Let

(7 :== {jf  b . g ~ = 0 ~ E jT and define a conservative excessive
measure m~ := lc . m. We are going to show that if me is not the zero
measure, then me(Z) > 0. This will prove the assertion because = 1,
m-a.e. on Z.

So let us assume that the measure is non-zero. Then

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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Also, since me E Con is invariant,

the final equality following from (2.3). Consequently

But {Fu = 0} ~ ~t>0{Ft = 0} = Z as u - ~. So (4.8) implies

as desired. D

Remark 4.9. - Given k E define an operator U ~ on by the
formula

Following Neveu [32], let us say that a function f E p£ is m-special if

Uk f is a bounded function for each k E bpE* with > 0. Notice
that if f is m-special then  +00 for each t > 0 and x E E.
One can also show that m-special functions are m-integrable. If f and g
are both m-special and if g > 0, then the argument used above to prove
Theorem (1.1) shows that

The lack of an exceptional set in (4.10) may seem surprising until we recall
that the existence of a single strictly positive m-special function guarantees
that X is Harris recurrent (in the sense of [5]; see [32; Sect. 7]), in which
case m is the unique (up to constant multiple) a-finite invariant measure
for X. (This explains why the invariant a-algebra I does not appear on the
right side of (4.10).) Port and Stone [36; Thm. 5.3] have established a ratio
ergodic theorem without exceptional set in the context of Levy processes
in locally compact abelian groups. Analogous results for Harris recurrent

Vol. 34, n° 3-1998.
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Markov chains on general state spaces can be found in the work of Orey
[35], Neveu [33] and Metivier [26]. D
As a corollary of Theorem (1.1) we have the following sharp continuous-

time form of Brunel’s maximal inequality. As noted in section 1, Fukushima
[20] and Shur [39, 40] based their proofs of the "semipolar" form of the
ratio ergodic theorem on weaker forms of this inequality. We leave it to

the reader to verify that, conversely, Theorem (1.1) can be deduced from
Theorem (4.11).

THEOREM 4.11. - Fix h G Ll(m) and let B G subset of
{x E E : lim supt~~ Uth(x) > 0}. Then RBm(h) > 0.

Proof - Write h = ~ - g where f and g are positive elements of Ll (m).
If g = 0, m-a. e. then there is nothing to prove. Otherwise, C : _ ~ Ug =

E I is not m-polar. By Theorem (1.1), = limt~~ UtI jUtg > 1,
m-q.e. on B n C. Consequently, f - g > 0 on (pB = l~ n C. Thus

since 9 = 0, m-q.e. on E B C. D

We end this section with another corollary of Theorem ( 1.1 ) the ratio
ergodic theorem for general additive functionals. An additive functional
(AF) of X is an increasing, adapted, right-continuous process (At)t>o
such that At  +00 and At+s = At + As o 03B8t for all s, t > 0, Px-a.e.
for m-q.e. x G E. (It would be more precise to term such a process an
additive functional admitting an m-polar exceptional set; cf [21; p. 181]
or [18; (3.1)].)
The characteristic measure of the AF A (relative to m) is the measure

on ( E, ~ ) defined by the formula

(Actually, this definition makes sense for any excessive measure m.) We
say that A is integrable provided vA(E)  If A is integrable then,
since m E Con is invariant, the expectation appearing on the right side of
(4.12) is equal to t . P"2 dAs and

where r~ : [0, [0, +oo[ is any Borel function with ~~t) dt = 1.
Just as in the special case of an AF of the form J; f (X s) ds ( f E pL1 (m)),
if A is an integrable AF then PX(At)  -f--oo for all t > 0, for m-q.e. x E ~.
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The "semipolar exceptional set" form of the following ratio ergodic
theorem was proved by Direev [12] under duality hypotheses. See also
[4; Thm. 3.1] for the "polar" exceptional set form of the result, under

hypotheses amounting to Harris recurrence. Let the function q > 0 and the
measure  = q . m be as in the statement of Theorem (1.1). We are still
assuming that the excessive measure m is conservative.

PROPOSITION 4.14. - Let A and B be integrable AFs of X, and define
f(x) := g(x) := Then

for m-q.e. x in the set ~~ E E : supt > 0~.

Proof. - Apply Theorem ( 1.1 ) to the pair ( f, g), taking note of the
obvious inequalities

5. LOCAL LIMIT THEOREM

As a further application of the filling scheme we present an extension
of Mokobodzki’s local limit theorem [29; Cor. 19]; cf [38; (66.9)]. Our
argument is based on a local form of E. Hopf’s maximal inequality,
appearing as Lemma (5.2) below.

Let A = ( At ) t > o and B = ( Bt ) t > o be continuous additive functionals
(CAFs) of X in the sense of [6; IV( 1.15)] . We assume, for simplicity that
the "characteristics" at (~) := and are finite for
all t > 0 and all x E E. Then t) .- at(x) and t) .- are

(finite, regular) space-time potentials, and the filling-scheme construction
of section 2 can be carried out as follows. Let G denote the least space-
time supermedian majorant of (3 - ~, and define non-negative functions
F := + a and H = ~3 - G. The potential G is strongly dominated by
,~, so by Motoo’s theorem ([31], [38; (66.2)]) and the result ofMokobodzki
already cited in section 2, there exists g : E x ~ 0, oo [~J 0, +oo[, measurable
over the universal completion of ~ 0 such that 0  g  and
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where r) :- is a CAF of X. The obvious analogue of
Proposition (2.4) is valid in the present context; in particular, t ~ Ft (x)
is increasing and continuous on [0, 

LEMMA 5.2. - Fix an excessive measure m of X, and assume that the
characteristic measures vA and vB (as defined by (4.12)) have finite total
mass. Let (F, G) be the filling scheme associated with a and ,Q as above,
and define D := nt~o~Ft > 0~. Then vA > vB on D.

Proof. - It follows easily from the definitions that

(5.3)

Sending t to 0 in (5.3) we find that if w E and s > 0, then

Let us now take w in (5.4) of the form ( f : E 2014~ [0, +oo[
bounded and continuous). Since X is a right process, t - e-atw(Xt)
is a positive bounded right-continuous supermartingale. Thus the left limit
w(X)t- := lims~t w(Xs) exists for all t > 0, almost surely. The time-set
{t > 0 : w(X )t_ ~ is at most countable (almost surely), hence
not charged by the random measures dAt, dBt. Therefore, by the proof
of (8.7) in [22], we have

and

Using these facts to pass to the limit as s --~ ~ in (5.4), we obtain
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for every bounded continuous f > 0. But for such f, converges

boundedly and pointwise to f as c~ 2014~ oo. Therefore (5.5) implies

for every bounded continuous function f. Since E is the Borel a-algebra
of a metrizable Lusin measurable space, we conclude from (5.6) that

VA > vB on all of £. D

Remark 5.7. - A minor modification of the above argument shows that
for any t > 0,

an inequality which is closely related to a result of Mokobodzki [30;
Thm. 9]. We leave it to the reader to show that (5.8) implies the (generalized)
Hopf maximal inequality: for each t > 0,

THEOREM 5 .1 ~. - Let m be an excessive measure, and assume that the

characteristic measures vA and vB (computed relative to m as in (4.12))
have finite total mass. Let be the Lebesgue-Radon-Nikodym
decomposition of vA with respect to vB. Then

Proof. - By a standard reduction, we can assume that At  Bt for all
t > 0, in which case vA  vB and :== d vA / dvB  1. Fix b > 0

and let (F, G) be the filling scheme associated with := PX(At) and
:= PX(b . Bt), as discussed above. By Lemma (5.2),

which is absurd unless vB({cp  0. Thus, for vB-a.e. x E {~p  b~
there exists t(x) > 0 such that 0 for 0  t  ~(~r), in which case
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It follows that  b for VB-a.e. x E ~~p  b~.
Varying b, we conclude that  p for vB-
a.e. x E E. The same argument applied to the CAF Bt - At shows
that 1 - cp(x) for vB-a.e. x, so

> cp(x) for vB-a.e. x. D

We now apply Theorem (5.10) in space-time to obtain the promised
extension of Mokobodzki’s local limit theorem. See also Airault and

Follmer [1; (5.31)] for a similar result obtained under much more restrictive
conditions. (In addition to a harmless transience hypothesis, they assume the
existence of a nice Martin boundary providing an integral representation
for excessive functions.) For the statement of the theorem let A and B
be CAFs, and recall that a set D E £* is of B-potential zero provided

0 for all x E E. By the theorem of Motoo cited
earlier in this section, there is a function cp E ~E*, uniquely determined
modulo sets of B-potential zero, such that 

.

for all x E E, where C is a CAF that is singular with respect to
B in the sense that there exists D E ~’~ of B-potential zero such that De
is of C-potential zero.

THEOREM 5.13. - Let A and B be CAFs with finite characteristics 
and respectively. Let the "Motoo density " p be as in (5 .12}. Then
for all x outside a set of B-potential zero,

Proof. - Define CAFs A and B of the space-time process X by
setting At(w,r) .- and Bt(w,r) .- Notice that

and similarly for B. Given (x, r) E 
the measure m := U(x, r; -) is an excessive measure of X. Since m is
a potential, the characteristic measure Y7~ of A (computed with respect to
m) is given by the formula

(See [24; (8.11)].) Notice that  oo. Similar
remarks apply to In particular, the function cp ~ 1 is a version of
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the Lebesgue-Radon-Nikodym derivative By Theorem (5.10)
(applied to X, the CAFs A and B, and the X -excessive measure m),

for (y, s) E E x ]0,oo[. That is, if D := {y E E :

as t - 0~, then

Since (x, r) E was arbitrary, we conclude from (5.16) that D is
of B-potential 0, which proves the assertion. D

6. RESOLVENT RATIO LIMIT THEOREMS

All of the results presented in previous sections have their "abelian"
analogues. We illustrate the possibilities with one example, the quasi-
sure form of a ratio-ergodic theorem of Edwards [14; Thm. 8]. Edwards
was concerned with the resolvent associated with a strongly continuous
semigroup of positive L1 contractions. A more general result has been
obtained by Feyel [16; Cor. 23] for general resolvent families consisting of
positive L~ contractions, with no assumption of strong continuity. Neither
of these authors restricted attention to resolvents that contract the L°°

norm, as we do here.

As before, q > 0 is a Borel function such that m(q) = 1, and  := q’ m.

THEOREM 6.1. - Let m be a conservative excessive measure and let f and
g > 0 be elements of L1 (m). Then

on ~x : Ug(x) > 0~.
Sketch of proof. - We assume without loss of generality that f > 0

and that U~ ( f + g)(x)  +00 for all A > 0 and all x E E. Fix A > 0,
let G~‘ denote the least A-supermedian majorant of U~‘ (g - f), and define
F’ := G~’ - U~‘ (g - f ) and H’ := UÀg - G~’ . Then FÀ A 0

and GÀ == for some function g~ E p~~‘ satisfying the estimate

Vol. 34, n° 3-1998.



404 P. J. FITZSIMMONS

g~‘  g - The function FÀ is the value function of a discounted

optimal stopping problem: For A > 0, -

where T ranges over the finite stopping times of X and ~’ ( a ) . - inf {t >
0 : F~ (Xt ) = 0~ . The first equality in (6.3) implies that A - F~‘ (x) is

decreasing and continuous, and the second yields the estimate

where Z := F~‘(x) = 0). With these facts in hand, one can
follow the line of reasoning used in section 4 to complete the proof. D
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