Ergodic theorems for surfaces with minimal random weights
Annales de l'I.H.P. Probabilités et statistiques, Tome 34 (1998) no. 5, pp. 567-599.
@article{AIHPB_1998__34_5_567_0,
     author = {Boivin, Daniel},
     title = {Ergodic theorems for surfaces with minimal random weights},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     pages = {567--599},
     publisher = {Gauthier-Villars},
     volume = {34},
     number = {5},
     year = {1998},
     mrnumber = {1641662},
     zbl = {0910.60078},
     language = {en},
     url = {http://archive.numdam.org/item/AIHPB_1998__34_5_567_0/}
}
TY  - JOUR
AU  - Boivin, Daniel
TI  - Ergodic theorems for surfaces with minimal random weights
JO  - Annales de l'I.H.P. Probabilités et statistiques
PY  - 1998
SP  - 567
EP  - 599
VL  - 34
IS  - 5
PB  - Gauthier-Villars
UR  - http://archive.numdam.org/item/AIHPB_1998__34_5_567_0/
LA  - en
ID  - AIHPB_1998__34_5_567_0
ER  - 
%0 Journal Article
%A Boivin, Daniel
%T Ergodic theorems for surfaces with minimal random weights
%J Annales de l'I.H.P. Probabilités et statistiques
%D 1998
%P 567-599
%V 34
%N 5
%I Gauthier-Villars
%U http://archive.numdam.org/item/AIHPB_1998__34_5_567_0/
%G en
%F AIHPB_1998__34_5_567_0
Boivin, Daniel. Ergodic theorems for surfaces with minimal random weights. Annales de l'I.H.P. Probabilités et statistiques, Tome 34 (1998) no. 5, pp. 567-599. http://archive.numdam.org/item/AIHPB_1998__34_5_567_0/

[1] M.A. Akcoglu and U. Krengel, Ergodic theorems for superadditive processes, J. Reine Angew. Math., Vol. 323, 1981, pp. 53-67. | MR | Zbl

[2] M. Aizenman, J.T. Chayes, L. Chayes, J. Frölich and L. Russo, On a sharp transition from area law to perimeter law in a system of random surfaces, Comm. Math. Phys., Vol. 92, 1983, pp. 19-69. | MR | Zbl

[3] N. Bleistein and R.A. Handelsman, Asymptotic Expansions of Integrals, Dover Publications, 1975. | MR | Zbl

[4] D. Boivin, Weak convergence for reversible random walks in a random environment, Ann. Probab., Vol. 21, 1993, pp. 1427-1440. | MR | Zbl

[5] D. Boivin, First-passage percolation: the stationary case, Probab. Th. Rel. Fields, Vol. 86, 1990, pp. 491-499. | MR | Zbl

[6] A. Calderon, Ergodic theory and translation invariant operators, Proc. Nat. Acad. Sci. USA, Vol. 59, 1968, pp. 349-353. | MR | Zbl

[7] J.T. Cox and R. Durrett, Some limit theorems for percolation processes with necessary and sufficient conditions, Ann. Probab., Vol. 9, 1981, pp. 583-603. | MR | Zbl

[8] A. Del Junco and J. Rosenblatt, Counterexamples in Ergodic Theory and Number Theory, Math. Ann., Vol. 245, 1979, pp. 185-197. | MR | Zbl

[9] J. Depauw, Thèse de doctorat, Université de Bretagne Occidentale, 1994.

[10] R. Durrett, Lecture Notes on Particule Systems and Percolation, Wads-worth & Brooks/Cole, 1988. | Zbl

[11] K. Golden and G. Papanicolaou, Bounds for effective parameters of heterogeneous media by analytic continuation, Comm. Math. Phys., Vol. 90, 1983, pp. 473-491. | MR

[12] G. Grimmett and H. Kesten, First-passage percolation, network flows and electrical resistances, Z. Wahrsch. verw. Gebiete, Vol. 66, 1984, pp. 335-366. | MR | Zbl

[13] O. Haggstrom and R. Meester, Asymptotic shapes for stationary first passage percolation, Ann. Probab., Vol. 23, 1995, pp. 1511-1522. | MR | Zbl

[14] Y. Kamae, A simple proof of the ergodic theorem using non-standard analysis, Israel J. Math., Vol. 42, 1982, pp. 284-290. | MR | Zbl

[15] M. Keane, Ergodic theory and subshifts of finite type. In Ergodic Theory, Symbolic Dynamics and Hyperbolic Spaces, Oxford University Press, 1991. | MR | Zbl

[16] H. Kesten, Surfaces with minimal random weights and maximal flows: A higher dimensional version of first-passage percolation, Illinois J. Math., Vol. 31, 1987, pp. 99-166. | MR | Zbl

[17] H. Kesten, Percolation theory and first-passage percolation, Ann. Probab., Vol. 15, 1987, pp. 1231-1271. | MR | Zbl

[18] H. Kesten, Aspects of first-passage percolation, Lecture Notes in Math., Vol. 1180, Springer, New York, 1986, pp. 125-264. | MR | Zbl

[19] S.M. Kozlov, The method of averaging and walks in inhomogeneous environments, Russian Math. Surveys, Vol. 40, 1985, pp. 73-145. | Zbl

[20] U. Krengel, Ergodic Theorems, de Gruyter Studies in Mathematics 6, de Gruyter, Berlin, 1985. | MR | Zbl

[21] W. Littman, Fourier transforms of surface-carried measures and differentiability of surface averages, Bull. of the AMS, Vol. 69, 1963, pp. 766-770. | MR | Zbl

[22] D. Richardson, Random growth in a tesselation, Proc. Cambridge Philos. Soc., Vol. 74, 1973, pp. 515-528. | MR | Zbl

[23] J.L. Rubio De Francia, Maximal functions and Fourier transforms, Duke Math. J., Vol. 53, 1986, pp. 395-404. | MR | Zbl

[24] S.L. Sobolev, Applications of Functional Analysis in Mathematical Physics. Translations of Mathematical Monographs, American Mathematical Society, Vol. 7, 1963. | MR | Zbl

[25] E.M. Stein and S. Wainger, Problems in harmonic analysis related to curvature, Bulletin of the AMS, Vol. 84, 1978, pp. 1239-1295. | MR | Zbl

[26] E.M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals, Princeton University Press, 1993. | MR | Zbl

[27] N. Wiener, The ergodic theorem, Duke Math. J., Vol. 5, 1939, pp. 1-18. | JFM | Zbl