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About the stationary states of vortex systems
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ABSTRACT. - We investigate the precise behaviour of a gas of vortices
approximating the vorticity of an incompressible, inviscid, two dimensional
fluid as proposed by Onsager [ 16] . For such mean field interacting particles
system with positive vortices, the convergence of the empirical measure
was proven in [3]. We improve this result by showing, for more general
values of the vortices, that a large deviation principle holds. We also prove
a central limit theorem for neutral gases. @ Elsevier, Paris

Key words: Statistical mechanics of two-dimensional Euler equations, Interacting particle
systems, Large deviations, Central limit theorem.

RESUME. - Nous étudions le comportement asymptotique d’un gaz de
tourbillons decrivant un fluide incompressible bidimensionnel. Ce système
est modélisé par une interaction de type champ moyen. La convergence
faible des mesures empiriques associées a ete prouvée dans [3]. Nous
étendons ce résultat et prouvons un principe de grandes deviations pour
des valeurs quelconques de 1’ intensite des tourbillons. Dans le cas d’un gaz
neutre, nous établissons aussi le théorème de la limite centrale. © Elsevier,
Paris
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1. INTRODUCTION

Recently, methods of approximations by particles systems have been
widely studied. For an incompressible, inviscid, two dimensional fluid a
natural approximating scheme follows the point vortex method. The basic
idea of the point vortex method is to approximate the vorticity of a fluid by
a "gas of vortices" which is represented by a linear combination of Dirac
measures The investigation of the 2 dimensional turbulence by
this method has been initiated by Onsager [16].

Onsager notices that the gas of vortices exhibits 3 different regimes.
When the inverse of the temperature {3 is positive and large the vortices are

mostly close to the boundary whereas they will be more or less uniformly
distributed for smaller but positive {3. But also, Onsager argued that there
is no reason to consider only positive temperatures: when the energy of
the system is increased the vortices of the same sign are forced to be
close to each other. This can be interpreted as a negative temperature
state. This tendency to create local clusters of the same sign has been
observed in numerical experiments by Joyce and Montgomery [12]. Since
then, many attempts have been made to understand this phenomenon. In
the standard thermodynamic limit, Frohlich and Ruelle [10] showed that
this negative temperature regime does not exists. Nevertheless, it was then

argued by Caglioti, Lions, Marchioro and Pulvirenti [3] and also by Eyink
and Spohn [8] that the mean field scaling is relevant for the study of this

negative temperature phase. In [3], it was proven that the weak limit of

the Gibbs measures associated to the N-vortex systems converges towards

some measure concentrated on particular stationary solution of the 2-D
Euler equation. They also computed the behavior of these solutions as {3
converges to the critical temperature 

Viewing the vortex method as a way to approximate these solutions, it

is natural to wonder what is the speed of this convergence. Our goal is to

precise it by proving large deviations and central limit results. Also, we
will investigate more precisely the role of the signs of the vortices.

We follow the discretization procedure described in [15]. The vorticity
field in a bounded domain A is approximated by a linear combination of
N Dirac measures concentrated in points Xi of A with intensity Then,
the N-vortex system in A is described by the Hamiltonian
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207VORTEX SYSTEMS

where X = (~ 1, ... , xn ) and VA is the Green function of the Laplacian in
A with Dirichlet boundary conditions. More precisely

where qA is symmetric and harmonic in each variable. Moreover,
WA(x) == 

In the following, we will assume that the intensities are bounded. Without
loss of generality we can assume that they are bounded by 1. In [3],
Caglioti et al. consider all the vorticities equal to + 1 and in [ 10], Frohlich
and Ruelle consider the neutral case, i.e. the sum of the intensities equal
0. Here, we wish to consider general {-1,1} valued intensities. First, we
shall assume that the Ri’s have a fixed ratio of -1 and 1. We will refer

to this setting as quenched. On the other hand we wish to consider as well
the case where the intensities are randomly distributed, we will assume
that they are independent and identically distributed (i.i.d.) with Bernoulli
law QN = Q0N.
We denote by

the product of Lebesgue measures on A‘~ . In the following, ~ will be either
We denote by .M(E) the space of measures on E

and by the space of probability measures on ~. We define

the set of probability measures with intensities marginal Q.
Let {3 be the inverse of the temperature. For a given sequence 

of intensities, we introduce the canonical quenched Gibbs measures on
bY

where

We consider as well the averaged Gibbs measures on 

Vol. 35, n° 2-1999.



208 T. BODINEAU AND A. GUIONNET

where

To state our large deviation principles we need to introduce the following
energy functional

Define

where Q) is the relative entropy of v with respect to the product
measure P Q9 Q. In section 2, we will see that :F (3 is lower semi-continuous.
To state in the simplest and more complete way our result, we shall

restrict ourselves in this introduction to the case where A is a disk. Then,
we have the following quenched large deviation result

THEOREM 1.1. - For any f3 in ] - Syr, ( 1 /N) converges to
a measure Q, the law of the empirical measure

under satisfies a large deviation principle with rate function

Moreover, the following averaged large deviation principle holds

THEOREM 1.2. - For any ,C3 in - 87r, 00[, the law of the empirical measure
under obeys a large deviation principle with action functional

The same results hold for any compact set A provided /3 G (- 87r , 87r);
for larger values of /3, our controls on the partition function are not good
enough to ensure the exponential tightness in general. For such /3’s, we
need to restrict ourselves to the case of the disk. The range of temperature
j3 EJ - 87T, oo is optimal in the case where all the intensities Ri = 1 (see

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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[3]). On the other hand, for {3 e] - 87r, 87r[, our proof mainly depends on
the uniform bound on the intensities so that the generalization of our results
to any ~-1, 1] valued Ri is straightforward.

In section 2, we prove that for ,~ &#x3E; 0 or negative and sufficiently small,
Yq and Ya admit a unique minimizer. Therefore, Theorems 1.1 and 1.2

imply the almost sure convergence of the empirical measure.
In the last section, we investigate the fluctuations of the empirical

measure. This problem turned out to be difficult because of the logarithmic
singularity of the interaction. This is why we shall restrict ourselves to the
case where A is a disk, /3 is positive and the gas neutral. In this case,
the empirical measure converges towards v* = P Q9 Q. To describe the
fluctuations of the empirical measure around v*, let us first introduce the
operator E in L 2 ( v * ) with kernel VA(x, y)RR’ and I the identity in L 2 ( v * ) .
In the statement of the following central limit theorem, ,C is a subset of
L2 (v* ) described in section 4.1. Then
THEOREM 1.3. - If A is a circular disk and {3 is positive,

card{i: Ri = +1} - Ri = -1}| = o(N3 4), for any function

converges in law under towards a centered Gaussian variable with
covariance 

2) If Q == ~(8+1 + 8_1), for any function f E £,

converges in law under v,,N towards a centered Gaussian variable with
covariance

One can check that E is a non negative operator so that, at positive
temperature, I + ,~u is always non degenerate.

Vol. 35, n° 2-1999.
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As a conclusion, we wish to stress that the main difficulty in this paper
is to deal with the logarithmic singularity of the interaction. In particular,
at high but positive inverse temperature, we have to restrict to the case
where A is a disk (since we wish to consider signed intensities) in order
to control the partition function. Once we consider the fluctuations of the
empirical measure, the problem becomes even deeper and the hypotheses
more numerous. To overcome the problem of the logarithmic singularity of
the interaction, we therefore had to develop new techniques which should
be useful for other models where the interaction is singular.

2. STUDY OF THE RATE FUNCTION

In this section, we study the quenched (resp. averaged) rate function Yq
(resp. Ya) which is equal, up to a normalizing constant, to F(3 defined by
( 1 ). We will show that Yq is a good rate function and study its minima.
The generalization of these results to Ya is straightforward and stated in
the last subsection.

2.1. Yq is a good rate function if {3 is larger than -8x

Our purpose here is to show that, in the range of temperature ,~ &#x3E; -87r,

Y q is a good rate function or in other words that the sets

are compact subsets of MQ for any real number M. Since H is compact,
MQ is compact so that this is equivalent to prove that the sets KM are
closed, that is that is lower semi-continuous. The logarithmic singularity
of the energy will be controlled by the relative entropy thanks to entropic
inequalities.

The first step of this study is to show that for any f3 &#x3E; -87r, there exists 
’

a finite constant M, so that

this means that F{3 is bounded from below in terms of the entropy.
By definition of the Green function is the heat kernel in A with

Dirichlet boundary conditions, the energy functional is given by

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Therefore, ~ is non negative which yields, if j3 &#x3E; 0,

To establish such a bound in the negative temperature regime, we use the
definition of the relative entropy H. Indeed, by the definition of the relative
entropy and monotone convergence theorem, we have, for any ~ &#x3E; 0 and

But the exponent in the second term diverges as (1/2x) log 
Hence, if ~  47r, the last term is uniformly bounded independently of
y E A. Therefore, we get that, for 7~  47r, there exists a finite constant

C(7y) = supy log  exp{~|V(x,y)|}dP(x) so that

As a consequence, for any ~  47r,

where 1 + ~ is positive if ,~ E] - 87r, 0~ and q E] ~’~~ , 47r[. Therefore (5)
and (8) gives (3) for j3 &#x3E; -87r.

We are now going to show that the energy functional E is continuous on
the sets of bounded entropy. This is enough, according to (3), to conclude
that the KM’S are closed.

As a consequence of (3), any v in KM is absolutely continuous with
respect to P 0 Q. Let us denote pv the density of the first marginal of
v with respect to P

Observe as well that, for any continuous function § which vanishes in a
neighborhood of {(x, y) G A 2 : x = g~~, the truncated energy

Vol. 35, n° 2-1999.



212 T. BODINEAU AND A. GUIONNET

is bounded continuous in Thus, in order to prove that ~ is continuous,
it is enough to show that

vanishes when E goes to zero uniformly on {H  M} for a given M.
In view of the singularity of VA, this is also equivalent to prove this

property for

We can apply the result proved in [4] (Proposition 2.1 ) which yields, for
any positive E

The first term goes to zero with E. For the second term we notice that

Moreover, by property of the relative entropy, we know that

so that we deduce

But, by convexity of the relative entropy

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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so that we deduce from (9) that there exists bE going to zero with E so that

This term goes uniformly to zero with E on ~H  M~ so that ~ is
continuous on this set. The proof is complete with (3). D

2.2. Existence and uniqueness of the minimum of ~q
We first tackle the positive temperature regime where the rate function

satisfies the following
PROPERTY 2.1. - 0,
1 ) ~q is strictly convex.
2) ~q achieves its minimal value at a unique probability measure on 

which is defined by the nonlinear equation

where

Proof. - Since the entropy H is strictly convex and the energy £ is
convex (see (4)), it follows that Yq is strictly convex if f3 is non negative.
Hence, it admits a unique minimizer v*.

Moreover, since Yq achieves its minimum value, it is not hard to check
that the minima are described, on by the nonlinear equation

where

Of course, in the negative temperature case, the convexity of the rate
function is not clear. We can nevertheless prove

PROPERTY 2.2. - There exists a negative temperature flo, -87r  flo  0

so that, for any {3 E]{3o,O[, the functionnal ~q achieves its minimum value
at a unique probability measure v* so that

Vol. 35, n° 2-1999.
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Proof. - The proof now follows a fixed point argument. Namely, let us
assume that there is two minima v and v’. As before, both of them satisfy
the non linear equation (10). We are going to show that, if

then

is null. According to (10), it implies that v = v’ and therefore gives the
uniqueness of the minima. To prove the existence (which is already known
in view of our construction ), we could also apply a fixed point argument
based on the estimation of D ( v, v’ ) . We leave it to the reader.
We begin our argument by finding a bound on IIUvllCX) uniform on the

minima of ~q and which will be crucial later on.
Indeed, using (6) and (8), we find that, for any ~ E] |03B2| 2, 47r[, for any y E A

Notice that, since the energy £ is non negative, inf is a non decreasing
function of j3 and is therefore non positive for j3  0. Hence,

We shall choose in the following 7y = n3 = 1~ so that

c((3) = 2 ~+/3~(~) ~ uniformly bounded for (3 &#x3E; -6~r.

To estimate D(v, v’), note that (10) shows that for any x in A

Therefore, it is not hard to check that for all x E A,

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Taking the supremum over the x’s, we conclude that

Since (2c(13)e2c(3)I3I) ] /3] goes to zero with 1131, we find a positive so that

it is smaller than one for all ,~ E (-/30, 0). In that range of temperature, we
deduce that D(v, v’) = 0 so that v = v’. D

2.3. Properties of 0~z

It is not hard to generalize the preceeding to the average setting and
see that

LEMMA 2.3. - ~a is a good rate function. There exists a positive flo so
that for ,C3 E (-{30, oo), ~a admits a unique minimizer described by the non
linear equation

3. LARGE DEVIATIONS

3.1. Existence of the Gibbs measures

First we need to compute the range of temperature for which the Gibbs
measures are defined.

PROPOSITION 3.1. [3] - Let A be any compact set in ff~2. For any ,~3 in
] - 87T, 87r and any sequence of intensities with values in ~ -1,1 }, there is
a constant C such that the following holds for all N sufficiently large

This lemma is similar to the one proven by Caglioti et al. (see Lemma
2.1 [3]). If A is a disk, a more accurate statement holds for any positive
temperature

PROPOSITION 3.2. - If A is a disk, for any f3 in ]0, oo [ and any sequence
of intensities with values ±1, there is a finite real number p such that the
following holds for all N sufficiently large

Note that the previous results imply that the same bounds are also valid
for the averaged partition function. The proof of this sharp upper bound

Vol. 35, n° 2-1999.
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relies on the very specific form of VA when A is a disk. For more general
domains, we do not know if such a bound holds and even if one can get
any exponential bounds for j3 &#x3E; 87r and general {-1,+1}-intensities.

Proof. - In order to study the case of positive (and eventually large)
temperatures, we shall restrict ourselves to the case where A is a disk. To

simplify the notations, we will assume that A is centered at the origin and
with radius one so that VA has the specific form

where § is the reflection of y at the circle 9A (see Lemma 3.3 of Frohlich
[9]). Note that, if z = yi + z?/2 is the complex representation of ~/, ~ has
complex coordinate In the general case, we do not know how to
control the singularity of  A near the boundary of A.
To prove (13), let us first remark that by using Holder’s inequality, we

have

The last term in the above r.h.s. is clearly bounded uniformly in N. Let
us therefore focus on the second term

Here, we follow Frohlich [9] who used a representation for the energy
which reads

where X is the vector in 1R2N so that

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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and

The last term in the r.h. s. of (16) comes from the fact that x2 does not
interact with its image as noticed by Frohlich (see (3.11) of [9]) whereas
an interaction was included in the first term. Cauchy-Schwartz’s inequality
yields

1

It is not difficult to check that the expectation in the last term of the r.h.s.
of (17) is finite.

Let us now focus on the first term. If we denote I+ (resp. 7L) the indices
for which Ri = +1 (resp. Ri = -1 ), we have

To use this representation, we adapt the argument used by Deutsch and
Lavaud [7] (see also Frohlich [9]). Indeed, let us recall the following
formula from [7] valid for any complex numbers 

where the sum is over all the permutation a of {1, .. , n ~ and 6(cr) is the

signature of a. Therefore, (18) and (15) shows that, since ~7~ _ ~7~ = N,
if we denote = and == 

Vol. 35, n° 2-1999.
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The last term in the above r.h.s. is bounded independently of the

permutation a. Therefore, we have shown that for some constant C

This completes the proof of Proposition 3.2 with (15).

3.2. A large deviations principle

To derive the large deviations principle we have to control the singularities
of the Hamiltonian. We define the new functional

We note that for any probability measure v with finite 
Therefore, the main point in the proof of theorem 1.1 is to show that the

energy ? is quasi-continuous i.e. for any probability measure v in 
with finite entropy, any 6 positive and for all Ri’ s,

where (LN was defined in (2) and B(v, ~) is the ball of radius ~ around

v for the distance d defined by

where C° (A) is the set of continuous functions on the compact A bounded
by 1.

Before going on, we explain briefly how to recover the large deviations
principle from the quasi-continuity (20). Since the space is

compact, it is enough to prove a weak large deviations principle. We fix v a
probability measure with finite entropy. We first compute the denominator
of E and we will deal with in a second step. As

it has been noticed in the previous section, the term N ~=1 does

not contribute in the limit, so that we omit it in the computations.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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In order to get rid of the first term of the RHS we use Holder inequality
with a coefficient a &#x3E; 1 such that belongs to ] - Svr, oo[ [

Propositions 2.1 and 2.2 and inequality (20) tells us that the above quantity
vanishes exponentially fast

It remains to control the last term of the RHS. Well known large deviations
results imply

To prove the lower bound we note that

thus

By using inequality (20), we derive the lower bound

Finally, we will check that

Since A4) (Q) is compact, we cover it with a finite number of open balls
of radius e and we get from (21)

Vol. 35, n° 2-1999.
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The reverse inequality follows immediately from (22). Combining the

previous results, we have proven a weak large deviation principle

According to Theorem 4.1.11 of [5] the large deviation principle follows
from (24).

Similarly, Theorem 1.2 can be derived from

This can be proved in the same way as (20) so that in the following we
will focus on the proof of (20). In fact, the quasi-continuity property does
not depend on the intensities Ri . Indeed, let us denote

and define an error energy

Then (20) can be deduced from the following Lemma

LEMMA 3.3. - For any measure rrL in with finite entropy with

respect to the Lebesgue measure and for any {; positive, there is a function
f s with values in [0, ~[ such that

Furthermore f s satisfies

We postpone the proof of Lemma 3.3 and we derive (20).

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



221VORTEX SYSTEMS

In fact the potential VA is singular on {x = y} because of the logarithmic
term but also near the frontier of A because of the logarithmic divergence
of First we control the singularity on the diagonal.

Let us be given 8 &#x3E; 0 and a probability measure v in with finite

entropy. We introduce the functional

For any finite M the functional E defined on A4) (Q) by

is continuous. Therefore, there exists a constant eM small enough such that

Since v has a finite entropy, we know that E(v) is finite (cf (7)). By
dominated convergence Theorem, there is a constant M large enough such
that

Combining (25) and (26) we get for all c  eM

As EM does not depend on the sign of the vortices, we obtain an upper
bound which depends only on /~

The measure v has finite entropy, so that pv satisfies also the same

property; this enables us to apply lemma 2.3. Therefore for any M large

Vol. 35, n ° 2-1999.
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enough there exists a constant ~;M such for all E less than EM the following
holds

Letting ~ tends to 0 and M go to infinity, we derive the quasi-continuity
of the logarithmic part of the interaction

It remains to control the interaction term which depends on  A

where the functional v’ - E’ ( v’ ) is defined by

Noticing that ~y~ is harmonic in the interior of A and has a logarithmic
singularity at the boundary of A, there is some constant C such that

Therefore we can derive (28) by the same arguments as the ones used to
control the logarithmic singularity. Combining (27) and (28), we complete
Theorem 1.1.

3.3. Proof of Lemma 3.3

Let m be a probability measure with finite entropy. To control the

singularity of the logarithm we introduce a coarse graining procedure : we

partition the compact set A into cubes {Qi}i~K with side length exp ( - M) .
For any e positive, we define the set by

For any £’ sufficiently small is included in so that by
Chebyshev’s inequality, we have for any positive T

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Any empirical measure in is associated to configurations such
that the number ni of particles in the cube Q i satisfies

Therefore, summing over all the K-uplets ..., nK} which satisfy (29),
we get

The number of K-uplets ~nl, ... , nK ) is less than exp(K log N) so that
we have just to compute the upper bound of the RHS for a given uplet

..., nK~ which satisfies (29).

By using Stirling formula, we get that

Noticing that x log x &#x3E; &#x3E; 20141, we get

where ( denotes the area of the cube Qi . Finally, we derive the upper
bound

Let us now consider the last term in the RHS of (30). By definition
of EM, we have

Thus in the above sum, only the terms where Qi and Qj have a common
side (including the case Q i = Q j) contribute. Let us denote by Q i the

Vol. 35, n° 2-1999.
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union of the cubes which have a face in common with Q i and by ni the
number of particles in Qz.
We are going to show that for any T &#x3E; 0 there exist a finite constant

M(T) and a positive constant e(T) such that for any M &#x3E; M(T) and
e  6-(r) the following uniform bound holds

where the supremum is taken over all the configurations ~/ = ..., 

in Qi .
Combining (30), (31 ) and (32), we get that for any T there is M large

enough such that

This completes Lemma 2.2.

It remains to prove (32). First we derive a preliminary estimate

LEMMA 3.4. - For any measure m in with finite entropy with

respect to the Lebesgue measure the following holds

Proof. - For any cube we get from Jensen inequality applied to

Noticing that and are finite we deduce

that the RHS goes uniformly to 0 as M grows. This completes the

Lemma. D

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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By using Holder inequality, we split (32) into two terms. The first term
contains the interaction energy of the particles in Q i

the second one bounds the interaction energy between Q i and Q i

The next step is to estimate (34). From Holder inequality we get

A straightforward computation gives for any a in [0,2[

where c’ is a constant. According to (33), we know that when M goes to
infinity and 6- tends to 0, N goes to 0 uniformly. Hence for M sufficiently
large and é small enough, we get

By definition of ni (see (29)) and Lemma 2.4, we check that for M

sufficiently large and é sufficiently small

Therefore, we get

Vol. 35, nO 2-1999.



226 T. BODINEAU AND A. GUIONNET

_ Let us now consider (35). We recall that ni is the number of vortices in
Q i. Since each cell interacts only with its nearest neighbors, the number ni
is of the same order as ni. By using again Lemma 2.4, if M is sufficiently
large and E sufficiently small such that

we have

By applying Holder inequality we obtain

this leads to

Finally, combining (37) and (38), we complete the Lemma.

4. CENTRAL LIMIT THEOREM

In this last section, we study the fluctuations of the empirical measure

around v* (dx, dR), the limiting law of the empirical measures. Of course,
the problems due to the logarithmic singularity of the potential become

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques ,
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even more difficult than for the study of the large deviations. This is

the reason why the strategy followed in [2] seems to fail. We propose
here to follow an approach developed in [11] for strongly interacting
particles. This method allows to study fluctuations as soon as the empirical
measure converges. Its advantage is that it can easily deal with a logarithmic
singularity of the interaction. Its weakness is that it describes the fluctuations
of  /,/~ 2014 v* &#x3E; only for f in a subset of L2 (v* ) even if v* is non

degenerate. Also, this method requires a good control on the partition
function that we only got in Proposition 3.2 for neutral gases at positive
temperature on the disk. However, we believe that central limit theorems
should hold for more general choices of the intensities, small negative
temperatures and more general compact domains. The proof is performed
in two steps : first we apply our strategy to get a biaised central limit
theorem where the fluctuations are shifted by a remaining term. Secondly,
we show that this remaining term goes to zero in probability via controls
on the partition function to obtain the standard central limit result.

4.1. A biaised central limit Theorem

Let E be the operator in L2 ( v* ) with kernel VA(x, y)RR’ and I be
the identity in L2 (v* ) . We are going to prove biaised fluctuations for test
functions f in a subset £ of L2 (v* ) where

where

Then,

LEMMA 4.1. - For any function f in ,C, there exists a random variable

RN ( f ) so that
1 ) Under and v,~,N,

converges in law to a centered Gaussian variable with covariance

Vol. 35, n° 2-1999.
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2) Quenched convergence of RN : There exists a finite constant C f so
that, if, for a &#x3E; (1/2) and for N large enough, we have

then, for any positive E we have

3) Averaged convergence of the rest : There exists a finite constant C f
so that for any positive E we have

Let us also notice that

where

The same formula holds for V{3,N with the partition function

Thus, we deduce from Lemma 4.1 that

LEMMA 4.2. - 1 ) If, for a in a neighborhood of ,~,
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then, for any function f in .c,

converges in law under to a centered Gaussian variable with covariance

2) If, for a in a neighborhood of ,~3,

then for any function f in £,

converges in law under to a centered Gaussian variable with covariance

Proof. - Indeed, this assumption allows us, by Holder inequality, to

compare (resp. v,,N) with (resp. v*) and to conclude,
according to Lemma 4.1.2 (resp. Lemma 4.1.3), that &#x3E; E)
(resp. vj3,N(IRN(!)1 &#x3E; E)) goes to zero. Therefore, Lemma 4.2 is a direct
consequence of Lemma 4.1. D

We will see in the next subsection that the assumption of Lemma 4.2 are
fulfilled in the setting of Proposition 4.2.

Proof of Lemma 4.1. - Let us first notice that, according to our large
deviations principle, the term in the density of containing WA is

converging almost surely. Therefore, we can easily approximate it by its
averaged value and neglect it. In the following, we will assume that this
term disappears. We want to prove fluctuations in the scale (1/B/TV) as a
consequence of the sensitivity to perturbations in the scale (1/V~V). To
this end, let us consider a smooth function k = (~1~2) and the change
of variables Xi where
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which is possible as soon as (~~~k;~~~~~)  1. Doing this change of
variables in the partition function, we find that, if k is null at the boundary
of A then cPk is a bijection of A,

where, if 8i is the derivative with respect to the ith variable (do not forget
x = (xl, x2) in d - 2),

divk = 81 ki + 82k2 and J(k) = 8lkl82k2 - ~l~2~2~1-

Furthermore, expanding the first term in the exponent, it is not hard to

see that, since if k is continuously differentiable,

are bounded continuous, there exists a function EN going to zero when N
goes to infinity such that

where all the terms in the expansion are bounded continuous. Here, we
have denoted

and fJ(2) = DD. Notice that
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where 9j denotes the derivation with respect to the jth coordinate in the
ith variable. Therefore, (40) gives

where, we denote

In other words, (40) reads

Let us interpret (46) in terms of central limit Theorem. We define

where v* is the limiting law of the empirical measures.

Recalling that DVA (y, x) [k(y) ; k (x)] is bounded continuous and denoting
r f the bounded centered continuous function
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we find

We prove in the Appendix, Lemma 5.2 (i) that the last term in (48) is null.
The second term in the r.h.s of (48) corresponds to the remainder and we let

It is well known (see [1] for instance ), that, since r f is bounded, for 6
small enough,

Chebyshev’s inequality shows that RN(f) satisfies Lemma 4.1.3). To get
the quenched analogue Lemma 4.1.2) of this result, one needs to replace
!/* by the 1 N 03A3Ni=1 03B4Ri03BD*Ri in rf. Once this is done, the same result holds.
The price is of order Thus, we find also that

RN(f) verifies Lemma 4.1.2.
Hence, the main contribution in (48) is given by the first term which

is on the scale of the central limit theorem and describes the fluctuations

of  /~-~ &#x3E;.

Let us consider the second term Af in our expansion and denote

If k is continuously differentiable, it is not hard to see that F(x, y, R, R’ )
is bounded continuous. Moreover,
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Thus, the second term in (46) is governed by the law of large numbers
and we almost surely have

As a consequence of our large deviations result, we have therefore proved
that

Extending our computation to for real numbers a, our result shows that

the moment generating functions of

converge so that XN(!) converges in law to a centered Gaussian

variable with covariance 2 J F(x, y , R, R’)dv* (x, R) dv* (y , R’). Moreover,
according to Lemma 5.1 in the appendix, the relation between k and f reads

Finally, we prove in Lemma 5.2 (ii) in the appendix that

which achieves the proof of Lemma 4.1. D

4.2. Control on the remaining terms; the neutral case

Let us assume that the medium is neutral, that is that there are roughly
as many positive vortices as negative vortices. In this case, it is not difficult
to see that
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is a minimum of Qq. Therefore, at least when the temperature is not too
negative, the positive and negative vortices are both distributed uniformly
over A and ZN = ZfJv.
To check the hypothesis of Lemma 4.2 and complete the proof of

Theorem 1.3, we shall rely on Proposition 3.2 and therefore restrict to the
positive temperature and disk setting. We are going to see that

LEMMA 4.3. - Let A be a disk. If 03B2 &#x3E; 0 and Ri = +1} - card{i :
Ri = -i}!  then

and

About the averaged setting, we can prove the following

LEMMA 4.4. - Let A be a disk. 0 and Q = (1/2)(6+i + 6- 1 ) then,

These two Lemmas and Lemma 4.2 complete the proof of Theorem 1.3.

Proof. - The proof of the above Lemmas follows from Proposition 3.2
and Jensen’s inequality. Indeed, Proposition 3.2 shows that when A is a
disk and j3 is positive, the partition function grows at most polynomialy in
N so that the upper bound of Lemma 4.2 is proven. To control the lower
bound, let us apply Jensen’s inequality. For the quenched setting we get

If = o(Ni), the above r.h.s. is clearly of order o N . Thesecond assertion of Lemma 4.3 is clear. 
( ~) e

For the average setting, Jensen’s inequality immediatly shows that the
free energy is non negative and Proposition 3.2 gives the upper bound since
it is uniform on the intensities. D
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5. APPENDIX

LEMMA 5.1. - If f is defined by (47), then :

Proof. - Indeed, the following algebra due to integration by parts formula
holds :

where we have denoted at the second line D and the differential

operators such that

for any differentiable functions W on A and V on 112. D

LEMMA 5.2.

Vol. 35, n° 2-1999.



236 T. BODINEAU AND A. GUIONNET

J

Proo, f : - Again, we could apply integration by parts formula to get our
result. A short cut (but equivalent way) is to do a perturbation ~ 2014~+6~(~)
in the partition function of the limit law v*. Expending in E and writing
that the second term in the expansion is null yields (i). Writing down that
the third term is null gives

From the definition of D and of f, we get,

Moreover, by integration by parts, one sees that

and

Thus, according to Lemma 5.1,
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