About the stationary states of vortex systems
Annales de l'I.H.P. Probabilités et statistiques, Volume 35 (1999) no. 2, pp. 205-237.
@article{AIHPB_1999__35_2_205_0,
     author = {Bodineau, Thierry and Guionnet, Alice},
     title = {About the stationary states of vortex systems},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     pages = {205--237},
     publisher = {Gauthier-Villars},
     volume = {35},
     number = {2},
     year = {1999},
     mrnumber = {1678526},
     zbl = {0920.60095},
     language = {en},
     url = {http://archive.numdam.org/item/AIHPB_1999__35_2_205_0/}
}
TY  - JOUR
AU  - Bodineau, Thierry
AU  - Guionnet, Alice
TI  - About the stationary states of vortex systems
JO  - Annales de l'I.H.P. Probabilités et statistiques
PY  - 1999
SP  - 205
EP  - 237
VL  - 35
IS  - 2
PB  - Gauthier-Villars
UR  - http://archive.numdam.org/item/AIHPB_1999__35_2_205_0/
LA  - en
ID  - AIHPB_1999__35_2_205_0
ER  - 
%0 Journal Article
%A Bodineau, Thierry
%A Guionnet, Alice
%T About the stationary states of vortex systems
%J Annales de l'I.H.P. Probabilités et statistiques
%D 1999
%P 205-237
%V 35
%N 2
%I Gauthier-Villars
%U http://archive.numdam.org/item/AIHPB_1999__35_2_205_0/
%G en
%F AIHPB_1999__35_2_205_0
Bodineau, Thierry; Guionnet, Alice. About the stationary states of vortex systems. Annales de l'I.H.P. Probabilités et statistiques, Volume 35 (1999) no. 2, pp. 205-237. http://archive.numdam.org/item/AIHPB_1999__35_2_205_0/

[1] M.A. Arcones, E. Gine, Limit Theorems for U-processes, Ann. Probab., Vol. 21, 1993, pp. 1494-1542. | MR | Zbl

[2] G. Ben Arous, M. Brunaud, Méthode de Laplace : Etude variationnelle des fluctuations de diffusions de type "champ moyen", Stochastics , Vol. 31-32, 1990, pp. 79-144 | MR | Zbl

[3] E. Caglioti, P.L. Lions, C. Marchioro, M. Pulvirenti, A special class of stationary flows for two dimensional Euler equations : A statistical mechanics description, Commun. Math. Phys., Vol. 143, 1991, pp. 501-525. | MR | Zbl

[4] E. Caglioti, P.L. Lions, C. Marchioro, M. Pulvirenti, A special class of stationary flows for two dimensional Euler equations : A statistical mechanics description. Part 2 Commun. Math. Phys., Vol. 174, 1995, pp. 229-260. | MR | Zbl

[5] A. Dembo, O. Zeitouni, Large deviations techniques and Applications. Jones and Bartlett, 1993. | MR | Zbl

[6] J.-D. Deuschel, D.W. Stroock, Larges deviations, Academic Press, 1989. | MR | Zbl

[7] C. Deustch, M. Lavaud, Equilibrium properties of a two dimensional Coulomb gas, Phys. Rev. A, Vol. 9, 6, 1973, pp. 2598-2616.

[8] G.L. Eyink, H. Spohn, Negative-temperature states and large-scale, long-lived vortices in two-dimensional turbulence, J. Stat. Phys., Vol. 70, Nov. 3/4, 1993, pp. 833-886. | MR | Zbl

[9] J. Fröhlich, Classical and quantum statistical mechanics in one and two dimensions, two component Yukawa and Coulomb systems, Commun. Math. Phys., Vol. 47, 1976, pp. 233-268. | MR | Zbl

[10] J. Fröhlich, D. Ruelle, Statistical mechanics of vortices in an inviscid two-dimensional fluid, Commun. Math. Phys., Vol. 87, 1982, pp. 1-36. | MR | Zbl

[11] A. Guionnet, Fluctuations for strongly interacting random variables and Wigner's law, to appear in Prob. Th. Rel. Fields, 1996.

[12] G. Joyce, D. Montgomery, Negative temperature states for the two dimensional guiding-centre plasma, J. Plasma Phys., Vol. 10, part 1, 1973, pp. 107-121.

[13] M. Kiessling, Statistical mechanics of classical particles with logarithmic interactions, Commun. Pure Appl. Math., Vol. 46, 1, 1993, pp. 27-56. | MR | Zbl

[14] M. Kiessling, J. Lebowitz, The micro-canonical point vortex ensemble : beyond equivalence, Lett. Math. Phys., Vol. 42, 1, 1997, pp. 43-58. | MR | Zbl

[15] C. Marchioro, M. Pulvirenti, Mathematical theory of incompressible nonviscous fluids, Springer, Applied Math. sciences, Vol. 96, 1995. | MR | Zbl

[16] L. Onsager, Statistical hydrodynamics, Supplemento al Nuovo Cimento, Vol. 6, 1949, pp. 279-287. | MR

[17] S. Schochet, The point vortex method for periodic weak solutions of the 2-D Euler equations, Comm. Pure Appl. Math., Vol. 49, 9, 1996, pp. 911-965. | MR | Zbl