Depauw, Jérôme
Flux moyen d'un courant électrique dans un réseau aléatoire stationnaire de résistances
Annales de l'I.H.P. Probabilités et statistiques, Tome 35 (1999) no. 3 , p. 355-370
Zbl 0988.37004 | MR 1689882
URL stable : http://www.numdam.org/item?id=AIHPB_1999__35_3_355_0

Bibliographie

[1] D. Boivin, Weak convergence for reversible random walks in a random environment. The Annals Of Probability, vol. 21, No. 1427-1440, 1993. MR 1235423 | Zbl 0783.60067

[2] D. Boivin and Y. Derriennic, The ergodic theorem for additive cocycles of Zd or Rd. Ergod. Theory & Dynamical Systems. vol. 11, 1991, p. 19-39. Zbl 0723.60008

[3] J. Depauw, Théorème ergodique ponctuel pour cocycle de degré deux. C. R. Acad. Sci. Paris, t. 325, Série I, 1997, p. 87-90. MR 1461403 | Zbl 0895.60001

[4] H. Flanders, Infinite networks: I-Resistive networks. IEEE Transactions on Circuit Theory. Vol. CT-18, No. 3, May, 1971. MR 275998 | Zbl 0227.94023

[5] K. Golden and G. Papanicolaou, Bounds for effective parameters of heterogeneous media by analytic continuation. Comm. Math. Phys., vol. 90, 1983, p. 473-491. MR 719428

[6] H. Kesten, Percolation Theory for Mathematicians. Birkhäuser, 1982. MR 692943 | Zbl 0522.60097

[7] S.M. Koslov, The method of averaging and walks in inhomogeneous environments. Russian Math. Surveys, vol. 40, 1985, p. 73-145. Zbl 0615.60063

[8] R. Kunnemann, The diffusion limit for reversible jump on Zd with ergodic random bond conductivities. Comm. Math. Phys., vol. 90, 1983, p. 27-68. MR 714611 | Zbl 0523.60097

[9] G. Lawler, Intersections of Random Walks. Birkhäuser, 1991. MR 1117680 | Zbl 0925.60078

[10] F. Spitzer, Principles of Random Walks. Springer-Verlag, 1976. MR 388547 | Zbl 0359.60003

[11] E. Stein, Singular Integrals and Differentiability Properties of Functions. Princeton University Press, 1970. MR 290095 | Zbl 0207.13501

[12] E.M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, 1971. MR 304972 | Zbl 0232.42007

[13] A.H. Zemanian, Infinite Electrical Networks. Cambridge Tracts in Math., 101. Zbl 0755.94014