@article{AIHPB_1999__35_5_605_0, author = {Auscher, Pascal and Coulhon, Thierry}, title = {Gaussian lower bounds for random walks from elliptic regularity}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {605--630}, publisher = {Gauthier-Villars}, volume = {35}, number = {5}, year = {1999}, mrnumber = {1705682}, zbl = {0933.60047}, language = {en}, url = {http://archive.numdam.org/item/AIHPB_1999__35_5_605_0/} }
TY - JOUR AU - Auscher, Pascal AU - Coulhon, Thierry TI - Gaussian lower bounds for random walks from elliptic regularity JO - Annales de l'I.H.P. Probabilités et statistiques PY - 1999 SP - 605 EP - 630 VL - 35 IS - 5 PB - Gauthier-Villars UR - http://archive.numdam.org/item/AIHPB_1999__35_5_605_0/ LA - en ID - AIHPB_1999__35_5_605_0 ER -
%0 Journal Article %A Auscher, Pascal %A Coulhon, Thierry %T Gaussian lower bounds for random walks from elliptic regularity %J Annales de l'I.H.P. Probabilités et statistiques %D 1999 %P 605-630 %V 35 %N 5 %I Gauthier-Villars %U http://archive.numdam.org/item/AIHPB_1999__35_5_605_0/ %G en %F AIHPB_1999__35_5_605_0
Auscher, Pascal; Coulhon, Thierry. Gaussian lower bounds for random walks from elliptic regularity. Annales de l'I.H.P. Probabilités et statistiques, Volume 35 (1999) no. 5, pp. 605-630. http://archive.numdam.org/item/AIHPB_1999__35_5_605_0/
[1] Regularity theorems and heat kernel for elliptic operators, J. London Math. Soc. 2 (54) (1996) 284-296. | MR | Zbl
,[2] Temporal regularity for random walk on discrete nilpotent groups, J. Fourier Analysis Appl. (Kahane special issue) (1995) 141-151. | MR | Zbl
,[3] Analysis on graphs with regular volume growth, Symposia Math., to appear. | Zbl
,[4] Random walks on graphs with regular volume growth, G.A.F.A. 8 (1998) 656-701. | MR | Zbl
and ,[5] Minorations pour les chaînes de Markov unidimensionnelles, Probab. Theory Related Fields 97 (1993) 423-431. | MR | Zbl
and ,[6] Sulla differenziabilita e l'analiticita delle estremali degli integrali multipli regolari, Mem. Accad. Sci. Torino Cl. Sci. Fis. Mat. Nat. 3 (3) (1957) 25- 43. | MR | Zbl
,[7] Inégalité de Harnack elliptique sur les graphes, Coll. Math. 72 (1) (1997) 19-37. | MR | Zbl
,[8] Parabolic Harnack inequality and estimates of Markov chains on graphs, Rev. Mat. Iberoam. 15 (1) (1999) 181-232. | MR | Zbl
,[9] Versions discrètes de l'inégalité de Harnack, thesis, University of Cergy-Pontoise, 1997.
,[10] Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Princeton Univ. Press, 1983. | MR | Zbl
,[11] Introduction to Regularity Theory for Nonlinear Elliptic Systems, Birkhaüser, 1993. | MR | Zbl
,[12] The heat equation on non-compact Riemannian manifolds, Matem. Sbornik 182 (1) (1991) 55-87 (in Russian); English translation: Math. USSR Sb. 72 (1) (1992) 47-77. | MR | Zbl
,[13] Sobolev met Poincaré, to appear in Memoirs of the Amer. Math. Soc. | MR | Zbl
and ,[14] COSTE, Gaussian estimates for Markov chains and random walks on groups, Ann. Probab. 21 (1993) 673-709. | MR | Zbl
and -[15] Multiple Integrals in the Calculus of Variations, Springer, 1966. | MR | Zbl
,[16] Riesz transforms on graphs for 1 ≤ p ≤ 2, Math. Scand., to appear. | MR | Zbl
,[17] A note on Poincaré, Sobolev, and Harnack inequalities, Duke Math. J., I.M.R.N. 2 (1992) 27-38. | MR | Zbl
,[18] Parabolic Harnack inequality for divergence form second order differential operators, Potential Analysis 4 (4) (1995) 429-467. | MR | Zbl
,