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ABSTRACT. - This paper is concerned with regularity results for

starting points of continuous manifold-valued martingales with fixed
terminal value under a possibly singular change of probability. In

. particular, if the martingales live in a small neighbourhood of a point
and if the stochastic logarithm M of the change of probability varies
in some Hardy space Hr for sufficiently large r  2, then the starting
point is differentiable at M = 0. As an application, our results imply
that continuous finely harmonic maps between manifolds are smooth, and
the differentials have stochastic representations not involving derivatives.
This gives a probabilistic alternative to the coupling technique used by
Kendall ( 1994). @ Elsevier, Paris .
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766 M. ARNAUDON ET AL.

RESUME. - On etudie la regularite par changement de probabilite
eventuellement singulier, du point de depart d’une martingale continue
a valeurs dans une variete et de valeur terminale donnee. On prouve en

particulier que si la martingale est a valeurs dans un petit voisinage d’un
point et si le logarithme stochastique M du changement de probabilite
est dans un espace de Hardy Hr pour r  2 suffisamment grand, alors le

point de depart est differentiable en M = 0. On donne en application
une nouvelle preuve du resultat suivant obtenu par Kendall (1994)
avec des methodes de couplage : les applications continues et finement
harmoniques entre varietes sont C°°. On donne une expression de leur
differentielle qui ne fait pas intervenir de derivee. @ Elsevier, Paris

1. INTRODUCTION

Throughout this article (Q, is a filtered probability
space satisfying the usual conditions, such that all real-valued martingales
have a continuous version. Examples of such filtrations include Brownian
filtrations, Walsh filtrations, or filtrations such that there exists

a continuous martingale which has the (~)-predictable representation
property. For simplicity we assume that the probability of elements in 00
is Oor 1.

Let W be a smooth manifold and V a torsion-free connection on W.
For the sake of calculations we choose occasionally a Riemannian metric
g = (.1.) on W with corresponding Riemannian distance 8. However, in
general we do not assume that V is a metric connection to this or any
other Riemannian metric. Only when we refer explicitly to Riemannian
manifolds we always work with the Levi-Civita connection and the given
metric g.

Recall that a W-valued continuous semimartingale is a martin-

gale, if for each real-valued C2 function f on W,

is a real-valued local martingale.
If Y is a semimartingale taking values in W, we denote by its

Ito differential (see [7]). There is a canonical decomposition dVY =

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



767MANIFOLD-VALUED MARTINGALES

dm y + into a martingale part dm Y and a finite variation part 
The latter is also called the drift. Denote by r~k the Christoffel symbols
of the connection. In local coordinates and in terms of the decomposition
dYi = d Ni + d Ai , where Ni is a local martingale and Ai a process of
finite variation, we have:

and so

Formally, dm Y. and are tangent vectors at the point Y..
. For a real-valued local martingale M let Y. (M), if it exists, be a W-

valued semimartingale with drift -d M d Y (M) converging almost surely
as t tends to infinity to a fixed W-valued random variable L. Here
d M d Y (M) is the "vector" d (M, The principal objective of
this article is to find conditions on W under which the map M - Yo (M)
is Holder continuous or differentiable. The main results (Proposition 3.3
and Theorem 3.5) show that if the processes take their values in a

compact convex subset V of W with p-convex geometry, then the
distance between Yo(0) and Yo (M) is less than for

some constant C depending only on V and r &#x3E; 1. Moreover, if W

is sufficiently small and M varies in some Hardy space Hr for r  2

sufficiently large, then M r+ Yo (M) is differentiable at M == 0 and a

formula for its derivative can be given in terms of the geodesic transport
above Y.(0).

Note that if M is a real-valued martingale, there exist stopping times T
arbitrarily large in probability such is a uniformly integrable
martingale. The semimartingale Y (M) stopped at T is a -martingale
where = ~(M)~ . P. Hence, Proposition 3.3 and Theorem 3.5 cover
regularity results for starting points of martingales under an equivalent
change of probability.
The notion of p-convexity plays a fundamental role. We prove

(Proposition 2.4) that for every p &#x3E; 1 and every x E W there exist a

neighbourhood of x with p-convex geometry..
In order to establish the differentiability of the map M - Yo(M), we

also need (Proposition 2.7) that for every &#x3E; 0 and every x E W there

exist a neighbourhood V of x such that Z/-norms of the inverse of the
geodesic transport along any V-valued martingale are finite.

Vol. 35, n° 6-1999.



768 M. ARNAUDON ET AL.

In Section 4 the results and estimates from Section 3 are applied to give
an alternative proof of Kendall’s result that continuous finely harmonic
maps from a Riemannian manifold to a manifold with a connection, i.e.,
maps which send Brownian motions to local martingales, are smooth.

2. PRELIMINARIES

Let V be a subset of W. A V-valued martingale Y is said to have
exponential moments of order Àg (or simply of order when V is a metric
connection to g ) if

We use the notation Y I Y ) for fo (d Y I d Y ) . By Proposition 2.1.2 of [ 11 ]
and the observation that there exists locally a function with negative

. Hessian, we have: ,

LEMMA 2.1. - Let À &#x3E; 0 and x E W. There exists a neighbourhood V
of x such that every V -valued martingale Y has exponential moment of
order ~,g.

Remark 2.2. - Another consequence of [ 11 ], Proposition 2.1.2, is that
if a compact subset V of W has a rieighbourhood which carries a function
with positive Hessian, then there exists À &#x3E; 0 such that all -V.-valued

martingales have exponential moments of order ~,g. In particular, the
quadratic variation of V -valued martingales has moments of any order,
which are bounded by a constant depending only on the order and on V.

DEFINITION 2.3. - ( 1 ) Let p &#x3E; 1. We say that W has p-convex
geometry if there exist a C2 function on W with positive Hessian, a
convex function W x W --~ R+, smooth outside the diagonal and
vanishing precisely on the diagonal, i.e., = {(x, x), x E W },
and a Riemannian distance 3 on W such that C03B4p with
constants 0  c  C.
A subset of W is said to have p-convex geometry if there exists an open

neighbourhood of W with p-convex geometry.
(2) A subset V of W is called convex if it has an open neighbourhood

V’ such that any two points x, y in V’ are connected by one and only
one geodesic in V’, which depends smoothly on x and y, and entirely lies
in V ifx and y are in V.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



769MANIFOLD-VALUED MARTINGALES

Note p-convex geometry implies p’-convex geometry for p’ &#x3E; p: if
1fr satisfies the conditions in the definition for p-convex geometry, then

satisfies the conditions for p’-convex geometry..
Simply connected Riemannian manifolds with nonpositive curvature

have 1-convex geometry. In general, a manifold does not have p-convex
geometry. However, we have the following local result.

PROPOSITION 2.4. - For every x E Wand p &#x3E; 1 there exists a

. neighbourhood of x with p-convex geometry.

Proposition 2.4 is a direct corollary of a more general result on totally
geodesic submanifolds (compare with [7] 4.59):

PROPOSITION 2.5. - Let W be a totally geodesic submanifold of W.
For every point a E Wand p &#x3E; 1, there exist a neighbourhood U of a
in W, a convex function f on U such that is smooth and constants

0  c  C such that c8p (~, W )  f  C~p (~, W ) on U.

Proof - For p ~ 2 the result is proved in [7, 4.59]. Let us assume 1 
p  2. As in [7, 4.59], we choose coordinates ..., xq , yq ~ 1, ... , yn )
vanishing together with the Christoffel symbols at a such that the

equation for W is {xl = ... = xq = 0}. We use Latin letters for indices
ranging from 1 to q and Greek letters for indices ranging from q + 1 to n.
Define f = where

Clearly f vanishes precisely on W and possibly by reducing U it satisfies

for some 0  c  C.
It is shown in [7] that h is convex for U small and s &#x3E; 0 close to 0. It

suffices to prove that f is convex, and since p &#x3E; 1, it is enough to check
this on {h &#x3E; 0}. But on {h &#x3E; 0},

Hence, for f to be convex, it is sufficient to verify that on {h &#x3E; 0} the
bilinear form b defined by
Vol. 35, n° 6-1999.



770 M. ARNAUDON ET AL.

is positive. As in [7] it suffices to check the matrix

to be positive on {h &#x3E; 0}. But a Taylor expansion of the entries reveals

It is easy to see that the 0-order term of the matrix with Latin index entries

is greater than (p - 1 ) Id. Regards the matrix with Greek index entries,
since W is totally geodesic the vanish on W, hence 
and for £ sufficiently small, the 0-order term of this matrix is greater
than £’ Id with £’ &#x3E; 0. This implies that f is convex in a neighbourhood
of a. D

In the case of Riemannian manifolds, Picard establishes a relation
between p, the radius of small geodesic balls and an upper bound for
the sectional curvatures ([12], proof of Proposition 3.6): if all sectional
curvatures are bounded above by K &#x3E; 0, then a regular geodesic ball with
radius smaller than &#x3E; 1, has p-convex geometry where p is the

conjugate exponent to q, and martingales with values in this geodesic ball
have exponential moments of order K q / 2.
The torsion-free connection V on W induces a torsion-free connection

VC on T W called the complete lift of V and characterized by the fact that
its geodesics are the Jacobi fields for V (see [15]), or by the fact that the
~c-martingales in T W are exactly the derivatives of V-martingales in W
depending differentiably on a parameter (see [2]).
The connection V induces another connection Vh on T W, called the

horizontal lift of V, which in general has nonvanishing torsion and is
characterized by the fact that if J is a T W -valued semimartingale with
projection X E W, then the parallel transport along J
(with respect to Vh) of a vector w = wvert C whor in VJo ~ HJ0
is given by

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



771MANIFOLD-VALUED MARTINGALES

where v V and h ° : H are, respectively, the
vertical and horizontal lift, //o,, the parallel transport along X with
respect to V . 

’

DEFINITION 2.6. - Let Y be a semimartingale taking values in W.
The geodesic transport Oo,s, 0 ~ s (also called deformed parallel
transport or Dohm-Guerra parallel translation) is the linear map from
TYo W to TYS W such that

(i) 80,0 is the identity map on TYo W,
(it) for w E TYo W the It3 differential d°c Oo,, (w) is the horizontal lift

above Oo,, ( w ) . ,

We define OS,t = for 0 ~ s ~ t. 
,

Let J be a T W -valued semimartingale which projects to a semimartin-
gale Y on W. By [2] we have

where R is the curvature tensor associated to V. Using the relation
between and in Lemma 4.1 of [2], we get

In local coordinates, adopting the summation convention, Eq. (2.2) can
be written as 

.

In the case when Y is a martingale, we are able to establish the
existence of moments for the norm of 0;,; along Y :
PROPOSITION 2.7. - Let x E Wand À &#x3E; 0. There exists a neighbour-

hood V of ~x such that for every V -valued martingale Y, the geodesic
transport above Y satisfies

where the is defined via the metric g.
Vol. 35, n° 6-1999.
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Proof. - Take V included in the domain of a local chart. Since Y is a
martingale, we have

in local coordinates, where Mm is a local martingale. Hence by (2.3),

This equation, together with Lemma 2.1 and [ 10], Theorem 3.4.6, gives
the result for an appropriately chosen V depending on h . 0

In the case of the Levi-Civita connection on a Riemannian manifold,
the situation is simpler because II I12, 0 ~ s  t, is a process of
finite variation, and one can give a more quantitative result.

PROPOSITION 2.8. - Let W be a Riemannian manifold and for y E W
let K(y) = sup(K’(y), 0) (respectively -k(y) = inf(-k’(y), 0)) where
K’ ( y) (respectively -k’ ( y) ) is the supremum (respectively the infimum)
of the sectional curvatures at y. Then, for any W -valued semimartingale
Y, the geodesic transport O along Y can be estimated in terms of the
quadratic variation Y ~ of Y as follows :

and

Proof - By means of [2], see (4.30), we have for any ~-measurable
random variable w in 7~ W .

Now with the bounds for the sectional curvatures we obtain

Hence

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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which gives the claim. 0

When Y is Brownian motion the bounds in (2.6) and (2.7) can be given
in terms of Ricci curvature as well known.

COROLLARY 2.9. - Let W be a Riemannian manifold and V a regular
geodesic ball in W with radius smaller than ~t/(2 Kq), q &#x3E; 1, where
K &#x3E; 0 is an upper bound for the sectional curvatures. Then, with respect
to the Levi-Civita connection, the geodesic transport along any V -valued
martingale satisfies

~roof - Just note that a V-valued martingale has exponential moments
of order Kq/2 by [12], and use (2.7). 0 

.

3. VARIATIONS OF MARTINGALES WITH PRESCRIBED
TERMINAL VALUE BY A CHANGE OF PROBABILITY

In the sequel we will say that a process has a random variable L
as terminal value if it converges to L as t tends to infinity. The
aim of this section is to establish regularity results for initial values
of martingales with prescribed terminal value when the probability is
allowed to vary. To formulate the main result of this article we first give
some definitions and lemmas.

LEMMA AND DEFINITION 3.1. - Let M be a real-valued local mar-

tingale and Z ~a W-valued semimartingale. The following two conditions
are equivalent:

(i) The semimartingale Z has drift -d M d Z where d M d Z is
the "vector" with the components d(M, in a system of
coordinates.

(ii) The stopped semimartingale ZT is a QT -martingale where QT =
~ (MT ) ~ I~ for every stopping time T such that the stochastic
exponential is a uniformly integrable martingale.

Vol. 35, n° 6-1999.
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If one of these conditions is satisfied we say that Z is a Q-martingale
with Q = ~(M) ~ I~ even if there is no probability equivalent to I~ such
that Z is a martingale, and the notion Q = ~(M) . I~ will mean that
a probability Q is defined on the subalgebras FT where it coincides

with QT.

Proof. - Since there exists a sequence (Tn)nEN converging almost
surely to infinity such that for every n E N, is a uniformly in-
tegrable martingale, one can assume that E(M) is a uniformly integrable
martingale and hence that Q = ~(M) ~ defines a probability equivalent
to P. Now, as a consequence of Girsanov’s theorem, we have that the re-
lation between the drift of Z with respect to P (denoted by d) Z) and with
respect to Q (denoted by d~° Z) is

This gives the equivalence of (i) and (ii). 0

LEMMA 3.2. - Let M be a real-valued martingale such that (M, 
fi 1 a. s. Assume that W has convex geometry and let Z be a semimartin-

gale with values in a compact subset V of Wand with drift -dZ d M.
Then, for every r &#x3E; 0, there exists a constant C ( V , r) &#x3E; 0 such that

Proof - Set G = ?(M). Then

Now by Lemma 3.1, Z is a G . P-martingale. Since W has convex geom-
etry one can construct a function with positive Hessian on a neighbour-
hood of V. Hence according to Remark 2.2, quadratic variations of mar-
tingales in V have uniformly bounded LS norms for s &#x3E; 0. This reveals

the last term to be bounded. The second term is obviously bounded (e.g.,
[13, Proposition 1.15, p. 318]). D . 

.

For r &#x3E; 1 let Hr be the set of real valued martingales M such that
. Mo = 0 and

is finite. Then (Hr, II is a Banach space.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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In the sequel, if S is a real valued process and i a stopping time, we
write S*03C4 for sups03C4 SS .
PROPOSITION 3.3. - Let V be a compact convex subset of W with p-

convex geometry for some p &#x3E; 1. Let r E ] 1, 2 [ and r’ E ] 1, r [. There
exists a constant C &#x3E; 0 depending only on 8, V, rand r’ such that for
every M E Hr, if Y is the V -valued martingale with terminal value Land
-z a V -valued semimartingale with drift -dZ d M and terminal value L,
then

Proof. - Let p : V x V -~ R+ be the convex function appearing in
the definition of p-convex geometry. Then a8p ~ ~/r ~ A8P on V with
constants 0  a  A. The required estimate (3.2) is equivalent to

Let T = inf { t &#x3E; 0, (M, M)t &#x3E; 1 } (with inf0 = oo ) . We have

Hence we are left to bound the first term on the right. First, Ito’s formula
for convex functions yields

Since 1fr is convex and the drift of (Y, Z) with respect to P is (0, -d M d Z),
we have 

.

Vol. 35, n° 6-1999.
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We get for the first term on the right-hand side of (3.5)

by using successively Doob’s inequality and Bienayme-Tchebichev
inequality. To deal with the second term in (3.5), let

We use successively the fact that 1fr is Lipschitz, Doob’s inequality and
Holder inequality. Choose ri &#x3E; 1 such that r and let rt be its
conjugate number. Then

According to Lemma 3.2 the last term is bounded. Thus, finally we get

Let M E Hr. By Y (M) we always mean a semimartingale with drift
-d M d Y and terminal value L. In the rest of this section we want to prove

differentiability of the map M H at M z 0 in Hr. The processes
~ 

we consider live in a convex set V, and since convex sets are included in

the domain of an exponential chart, we will identify V and its image in
such a chart.

First we need some lemmas.

LEMMA 3.4. - Let V be a compact convex subset of W with p-convex
geometry for some p E ~ 1, 2 [.

(1) Let r E I ~ , 2[. There exists a constant C &#x3E; 0 depending only on V
and r such that for every M E Hr, if Y and Z are as in Proposition 3.3,

Annales de t’lnstitut Henri Poincaré - Probabilités et Statistiques
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then

where t = inf{t &#x3E; 0, (M, M)t &#x3E; 1} (with infØ = oo).
(2) Let r’ E ]1, 4p [. For all r ~ ] sup ( 2r’ , r2 3 r,p) ) , 2 [ there exists a

constant C &#x3E; 0 depending only on V, rand r’ such that for every
Hr,

for all Y, Z and t as in ( I ).

Proof. - In the calculations below, the elimination of the brackets of Y
and Z by taking smaller Holder norms is done in the same way as in the
proof of Proposition 3.3 and will not again be carried out in detail. Set
a = 1/p.

(1) Using the facts that q5 = 82 is convex and

we obtain by Ito’s formula (3.4)

with r’  2 p, r"  2 satisfying ~ -f- r ,  1. This gives by (3.2)

if sup( i + 1, 2~ )  r  2. This proves the first assertion of the lemma.

(2) tfy Ito’s formula (3.4) we have

Vol. 35, n° 6-1999.
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To obtain the next estimate it is useful to note that

where the functions lfJij are smooth. Splitting the second term on the
right-hand side of (3.8) into its martingale and finite variation part and
estimating the Lr norms using BDG inequalities gives

where the single terms may be estimated with the same method as above,
using (3.2) and (3.6). For r’  p and 2r’ p  r  2, the first term on the

right is seen to be less than CllMlln (the difference here with the bound
on the first term on the right-hand side of (3.5) is that we use the Lr norm
of the bracket to the power 2a). By means of (3.2) the second term is
dominated by for r’  p and 

2r’ 
 r  2, the third term can be

estimated by ell M II n for

(here we use (3.6), and (3.2) with p’ = 3 p , together with the observation
that p-convex implies p’-convex). Finally, the fourth term is less than
C~M~203B1Hr if

(again by (3 .2) now with p’ = p 2-p). Thus, for all r, r’ such that 1  r’ 

4p 3+p and

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques


