@article{AIHPB_2000__36_1_87_0, author = {Batakis, Athanassios}, title = {A continuity property of the dimension of the harmonic measure of {Cantor} sets under perturbations}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {87--107}, publisher = {Gauthier-Villars}, volume = {36}, number = {1}, year = {2000}, mrnumber = {1743091}, zbl = {0946.37018}, language = {en}, url = {http://archive.numdam.org/item/AIHPB_2000__36_1_87_0/} }
TY - JOUR AU - Batakis, Athanassios TI - A continuity property of the dimension of the harmonic measure of Cantor sets under perturbations JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2000 SP - 87 EP - 107 VL - 36 IS - 1 PB - Gauthier-Villars UR - http://archive.numdam.org/item/AIHPB_2000__36_1_87_0/ LA - en ID - AIHPB_2000__36_1_87_0 ER -
%0 Journal Article %A Batakis, Athanassios %T A continuity property of the dimension of the harmonic measure of Cantor sets under perturbations %J Annales de l'I.H.P. Probabilités et statistiques %D 2000 %P 87-107 %V 36 %N 1 %I Gauthier-Villars %U http://archive.numdam.org/item/AIHPB_2000__36_1_87_0/ %G en %F AIHPB_2000__36_1_87_0
Batakis, Athanassios. A continuity property of the dimension of the harmonic measure of Cantor sets under perturbations. Annales de l'I.H.P. Probabilités et statistiques, Tome 36 (2000) no. 1, pp. 87-107. http://archive.numdam.org/item/AIHPB_2000__36_1_87_0/
[1] Principe de Harnack à la frontière et théorème de Fatou pour un opérateur elliptique dans un domaine Lipschitzien, Annales de l' Institut Fourier, Grenoble 28 (4) (1978) 169-213. | Numdam | MR | Zbl
,[2] Conformally maximal polynomial-like dynamics and invariant harmonic measure, Ergodic Theory Dynamical Systems 17 (1) (1997) 1-27. | MR | Zbl
, and ,[3] Harmonic measure of some Cantor type sets, Ann. Acad. Sci. Fenn. 21 (1996) 255-270. | MR | Zbl
,[4] Théorie du potentiel : 1. Sur les domaines Poissoniens 2. Sur la mesure harmonique des ensembles de Cantor, Ph.D. Thesis, Université de Paris-Sud, 1997.
,[5] On relations between entropy and Hausdorff dimension of measures, Preprint, Prépublications d'Orsay, 1998. | MR
and ,[6] On the Hausdorff dimension of general Cantor sets, Proc. Cambridge Philos. Soc. 61 (1965) 679-694. | MR | Zbl
,[7] On the support of harmonic measure for sets of Cantor type, Ann. Acad. Sci. Fenn. 10 (1985) 113-123. | MR | Zbl
,[8] Sur la dimension des mesures, Studia Math. 111 (1994) 1-17. | Zbl
,[9] Martingale Theory and its Applications, Probability and Mathematical Statistics, Academic Press, New York, 1980. | MR | Zbl
and ,[10] Estimations de la dimension inférieure et de la dimension supérieure des mesures, Ann. Inst. H. Poincaré Probab. Statist. 34 (1998) 309-338. | Numdam | MR | Zbl
,[11] A comparison of harmonic and balanced measures on Cantor repellors, J. Fourier Analysis and Applications (Special Issue J.-P. Kahane) (1995) 379-399. | Zbl
and ,[12] On the harmonic measure of discontinuous fractals, Preprint LOMI E-6-86, Leningrad, 1986.
and ,[13] Geometric Measure Theory, Cambridge University Press, 1995. | MR
,[14] On harmonic measure of self-similar sets in the plane, in: Harmonic Analysis and Discrete Potential Theory, Plenum Press, 1992. | MR
,[15] On the dimension of harmonic measure of Cantor-type repellers, Michigan Math. J. 40 (1993) 239-258. | MR | Zbl
,[16] Formalisme Thermodynamique et Systèmes Dynamiques Holomorphes. Panoramas et Synthèses, Vol. 4, Société Mathématique de France, 1997. | MR | Zbl
,